Phân tích trực quan về nghiên cứu công nghệ chỉnh sửa gen CRISPR/Cas9

Journal of Zhejiang University-SCIENCE B - Tập 17 - Trang 798-806 - 2016
Quan-sheng Du1, Jie Cui2, Chun-jie Zhang3, Ke He4
1Department of Life Sciences, National Natural Science Foundation of China, Beijing, China
2Guangdong Techno-economy Research and Development Center, Guangzhou, China
3School of Science, Hangzhou Dianzi University, Hangzhou, China
4College of Animal Science and Technology, Zhejiang A & F University, Lin’an, China

Tóm tắt

Hệ thống lặp lại palindrom ngắn xen kẽ thường xuyên cụm (CRISPR)/Protein liên kết CRISPR 9 (Cas9) là một hệ thống miễn dịch thích ứng chống lại sự xâm nhập của virus và plasmid, vật chất di truyền dị hợp trong vi khuẩn và vi sinh vật cổ. Bằng cách xem xét các tài liệu liên quan đến công nghệ chỉnh sửa gen CRISPR/Cas9 từ cơ sở dữ liệu Web of Science từ năm 2002 đến 2015, chúng tôi sử dụng phần mềm CiteSpaceV để phân tích các tài liệu được trích dẫn đồng thời nhằm thiết lập các điểm nóng và xu hướng nghiên cứu gần đây trong lĩnh vực này thông qua bản đồ tri thức.

Từ khóa

#CRISPR #Cas9 #chỉnh sửa gen #vi sinh vật #miễn dịch thích ứng #phân tích tài liệu

Tài liệu tham khảo

Barrangou, R., Fremaux, C., Deveau, H., et al., 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315(5819):1709–1712. http://dx.doi.org/10.1126/science.1138140 Bolotin, A., Ouinquis, B., Sorokin, A., et al., 2005. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, 151(8):2551–2561. http://dx.doi.org/10.1099/mic.0.28048-0 Brandes, U., 2001. A faster algorithm for betweenness centrality. J. Math. Sociol., 25(2):163–177. http://dx.doi.org/10.1080/0022250X.2001.9990249 Brouns, S.J., Jore, M.M., Lundgren, M., et al., 2008. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science, 321(5891):960–964. http://dx.doi.org/10.1126/science.1159689 Chen, C.M., 2004. Searching for intellectual turning points: progressive knowledge domain visualization. PNAS, 101(Suppl. 1):5303–5310. http://dx.doi.org/10.1073/pnas.0307513100 Chen, C.M., 2005. The centrality of pivotal points in the evolution of scientific networks. IUI ’05 Proceedings of the 10th International Conference on Intelligent User Interfaces, San Diego, California, USA. ACM, New York, USA, p.98–105. http://dx.doi.org/10.1145/1040830.1040859 Chen, C.M., 2006. Citespace II: detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inform. Sci. Technol., 57(3):359–377. http://dx.doi.org/10.1002/asi.20317 Chen, C.M., 2012. Predictive effects of structural variation on citation counts. J. Am. Soc. Inform. Sci. Technol., 63(3): 431–449. http://dx.doi.org/10.1002/asi.21694 Chen, C.M., Leydesdorff, L., 2014. Patterns of connections and movements in dual-map overlays: a new method of publication portfolio analysis. J. Assoc. Inform. Sci. Technol., 65(2):334–351. http://dx.doi.org/10.1002/asi.22968 Chen, C.M., Ibekwesanjuan, F., Hou, J.H., 2010. The structure and dynamics of cocitation clusters: a multipleperspective cocitation analysis. J. Am. Soc. Inform. Sci. Technol., 61(7):1386–1409. http://dx.doi.org/10.1002/asi.21309 Cong, L., Ran, F.A., Cox, D., et al., 2013. Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121): 819–823. http://dx.doi.org/10.1126/science.1231143 Freeman, L.C., 1977. A set of measuring centrality based on betweenness. Sociometry, 40(1):35–41. http://dx.doi.org/10.2307/3033543 Haft, D.H., Selengut, J., Mongodin, E.F., et al., 2005. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLOS Comput. Biol., 1(6):e60. http://dx.doi.org/10.1371/journal.pcbi.0010060 Hale, C.R., Zhao, P., Olson, S., et al., 2009. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell, 139(5):945–956. http://dx.doi.org/10.1016/j.cell.2009.07.040 Ishino, Y., Shinagawa, H., Makino, K., et al., 1987. Nucleotidesequence of the iap gene, responsible for alkalinephosphatase isozyme conversion in Escherichia-coli, and identification of the gene product. J. Bacteriol., 169(12): 5429–5433. Jansen, R., van Embden, J.D.A., Gaastra, W., et al., 2002. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol., 43(6):1565–1575. http://dx.doi.org/10.1046/j.1365-2958.2002.02839.x Jinek, M., Chylinski, K., Fonfara, I., et al., 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096):816–821. http://dx.doi.org/10.1126/science.1225829 Karginov, F.V., Hannon, G.J., 2010. The CRISPR system: small RNA-guided defense in bacteria and archaea. Mol. Cell, 37(1):7–19. http://dx.doi.org/10.1016/j.molcel.2009.12.033 Makarova, K.S., Grishin, N.V., Shabalina, S.A., et al., 2006. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct., 1(7):1–26. http://dx.doi.org/10.1186/1745-6150-1-7 Mali, P., Yang, L.H., Esvelt, K.M., et al., 2013. RNA-guided human genome engineering via Cas9. Science, 339(6121): 823–826. http://dx.doi.org/10.1126/science.1232033 Malina, A., Mills, J.R., Cencic, R., et al., 2013. Repurposing CRISPR/Cas9 for in situ functional assays. Gene. Dev., 27(23):2602–2614. http://dx.doi.org/10.1101/gad.227132.113 Marraffini, L.A., Sontheimer, E.J., 2008. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science, 322(5909):1843–1845. http://dx.doi.org/10.1126/science.1165771 Mojica, F.J., Diez-Villasenor, C., Soria, E., et al., 2000. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol. Microbiol., 36(1):244–246. http://dx.doi.org/10.1046/j.1365-2958.2000.01838.x Mojica, F.J.M., Díez-Villaseñor, C., García-Martínez, J., et al., 2005. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol., 60(2):174–182. http://dx.doi.org/10.1007/s00239-004-0046-3 Nakata, A., Amemura, M., Makino, K., 1989. Unusual nucleotide arrangement with repeated sequences in the Escherichia coli K-12 chromosome. J. Bacteriol., 171(6):3553–3556. Newman, M.E., 2006. Modularity and community structure in networks. PNAS, 103(23):8577–8582. http://dx.doi.org/10.1073/pnas.0601602103 Rousseeuw, P.J., 1987. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math., 20:53–65. http://dx.doi.org/10.1016/0377-0427(87)90125-7 Saunders, N.F.W., Goodchild, A., Raftery, M., et al., 2005. Predicted roles for hypothetical proteins in the lowtemperature expressed proteome of the Antarctic archaeon Methanococcoides burtonii. J. Proteome Res., 4(2): 464–472. http://dx.doi.org/10.1021/pr049797+ Stern, A., Keren, L., Wurtzel, O., et al., 2010. Self-targeting by CRISPR: gene regulation or autoimmunity? Trends Genet., 26(8):335–340. http://dx.doi.org/10.1016/j.tig.2010.05.008