Visual cues do not increase artificial nest predation in a Brazilian tropical savanna
Tóm tắt
Từ khóa
Tài liệu tham khảo
Assunção SL, Felfili JM (2004) Fitossociologia de um fragmento de Cerrado sensu stricto na APA do Paranoá, DF, Brasil. Acta Bot Bras 18:903–909. https://doi.org/10.1590/S0102-33062004000400021
Avilés JM, Solís E, Valencia J, de la Cruz C, Sorci G (2008) Female and male plumage brightness correlate with nesting failure in Azure-winged Magpies Cyanopica cyanus. J Avian Biol 39:257–261. https://doi.org/10.1111/j.0908-8857.2008.04218.x
Barton K (2020) MuMIn: Multi-model inference. R package version 1.43.17. https://CRAN.R-project.org/package=MuMIn
Bates HW (1981) Contributions to an insect fauna of the Amazon Valley (Lepidoptera: Heliconidae). Biol J Linn Soc 16:41–54. https://doi.org/10.1111/j.1095-8312.1981.tb01842.x
Biagolini-Jr C, Santos PVR (2018) Egg ejection cost can limit defence strategies against brood parasitism. Ethology 124:719–723. https://doi.org/10.1111/eth.12803
Biagolini-Jr C, Perrella DF (2020) Bright coloration of male Blue Manakin is not connected to higher rates of nest predation. Acta Ethol 23:183–191. https://doi.org/10.1007/s10211-020-00352-9
Broggi J, Senar JC (2009) Brighter Great Tits parents build bigger nests. Ibis 151:588–591. https://doi.org/10.1111/j.1474-919X.2009.00946.x
Cain KE, Hall ML, Medina I, Leitao AV, Delhey K, Brouwer L et al (2019) Conspicuous plumage does not increase predation risk: a continent-wide test using model songbirds. Am Nat 193:359–372. https://doi.org/10.1086/701632
Colombelli-Negrel D, Kleindorfer S (2009) Nest height, nest concealment, and predator type predict nest predation in Superb Fairy-wrens (Malurus cyaneus). Ecol Res 24:921–928. https://doi.org/10.1007/s11284-008-0569-y
Cresswell W (1997) Nest predation rates and nest detectability in different stages of breeding in Blackbirds Turdus merula. J Avian Biol 28:296–302. https://doi.org/10.2307/3676942
Czapliki JA, Porter RH (1974) Visual cues mediating the selection of Goldfish (Carassius auratus) by two species of Natrix. J Herpetol 8:129–134. https://doi.org/10.2307/1562808
Eggers S, Griesser M, Andersson T, Ekman JB (2005) Nest predation and habitat change interact to influence Siberian Jay numbers. Oikos 111:150–158. https://doi.org/10.1111/j.0030-1299.2005.13802.x
França LF, Marini MÂ (2009) Low and variable reproductive success of a Neotropical tyrant-flycatcher, Chapada Flycatcher (Suiriri islerorum). Emu 109:265–269. https://doi.org/10.1071/MU09052
França LF, Souza NOM, Santos LR, Duca C, Gressler DT et al (2009) Passeriformes: nest predators and prey in a Neotropical savanna in Brazil central. Zoologia 26:799–802. https://doi.org/10.1590/S1984-46702009000400028
Freeman-Gallant CR, Schneider RL, Taff CC, Dunn PO, Whittingham LA (2014) Contrasting patterns of selection on the size and coloration of a female plumage ornament in Common Yellowthroats. Evol Biol 27:982–991. https://doi.org/10.1111/jeb.12369
Götmark F, Olson J (1997) Artificial colour mutation: do red-painted Great Tits experience increased or decreased predation risk? Anim Behav 53:83–91. https://doi.org/10.1006/anbe.1996.0280
Grunst AS, Grunst ML, Rotenberry JT (2015) Sexual pigmentation and parental risk-taking in Yellow Warblers Setophaga petechia. J Avian Biol 46:9–17. https://doi.org/10.1111/jav.00496
Hamilton AM, Freedman AH, Franz R (2002) Effects of deer feeders, habitat and sensory cues on predation rates on artificial turtle nests. Am Midl Nat 147:123–134. https://doi.org/10.1674/0003-0031(2002)147[0123:EODFHA]2.0.CO;2
Haskell DG (1996) Do bright colors at nests incur a cost due to predation? Evol Ecol 10:285–288. https://doi.org/10.1007/BF01237685
Huhta E, Rytkonen S, Solonen T (2003) Plumage brightness of prey increases predation risk: an among-species comparison. Ecology 84:1793–1799. https://doi.org/10.1890/0012-9658(2003)084[1793:PBOPIP]2.0.CO;2
Husby M (2019) Nestling begging calls increase predation risk by corvids. Anim Biol 69:137–155. https://doi.org/10.1163/15707563-20181058
Ibáñez-Álamo JD, Sanllorente O, Arco L, Soler M (2013) Does nest predation risk induce parent birds to eat nestlings’ fecal sacs? An experimental study. Anna Zool Fenn 50:71–78. https://doi.org/10.5735/086.050.0106
Ibáñez-Álamo JD, Magrath RD, Oteyza JC, Chalfoun AD, Haff TM, Schmidt KA, Thomson RL, Martin TE (2015) Nest predation research: recent findings and future perspectives. J Ornithol 156:247–262. https://doi.org/10.1007/s10336-015-1207-4
Ibáñez-Álamo J, Soler M (2017) Male and female Blackbirds (Turdus merula) respond similarly to the risk of nest predation. J Ornithol 158:533–539. https://doi.org/10.1007/s10336-016-1403-x
Inmet INdM (2017) Banco de dados meteorológicos para ensino e pesquisa, data from 2000–2016. Brasília
Jawor JM, Gray N, Beall SM, Breitwisch R (2004) Multiple ornaments correlate with aspects of condition and behavior in female Northern Cardinals, Cardinalis cardinalis. Anim Behav 65:875–882. https://doi.org/10.1016/j.anbehav.2003.05.015
Keyser AJ, Hill GE (2000) Structurally based plumage coloration is an honest signal of quality in male Blue Grosbeaks. Behav Ecol 11:202–209. https://doi.org/10.1093//beheco/11.2.202
Leech SM, Leonard ML (1997) Begging and the risk of predation in nestling birds. Behav Ecol 8:644–646. https://doi.org/10.1093/beheco/8.6.644
Lindström L, Alatalo RV, Mappes J (1999) Reactions of hand-reared and wild-caught predators toward warningly colored, gregarious, and conspicuous prey. Behav Ecol 10:317–322. https://doi.org/10.1093/beheco/10.3.317
Magalhães RB, Diniz P, Macedo RHF (2014) Plumage coverage is related to body condition and ectoparasitism in Blue-black Grassquits. Wilson J Ornithol 126:581–584. https://doi.org/10.1676/13-197.1
Martin TE (1993) Nest predation and nest sites: new perspectives on old patterns. Bioscience 43:523–532. https://doi.org/10.2307/1311947
Martin TE (1995) Avian life history evolution in relation to nest sites, nest predation, and food. Ecol Monogr 65:101–127. https://doi.org/10.2307/2937160
Martin TE, Badyaev AV (1996) Sexual dichromatism in birds: importance of nest predation and nest location for females versus males. Evolution 50:2454–2460. https://doi.org/10.1111/j.1558-5646.1996.tb03631.x
Martin TE, Scott J, Menge C (2000) Nest predation increases with parental activity: separating nest site and parental activity effects. Proc R Soc Lond B, Biol Sci 267:2287–2293. https://doi.org/10.1098/rspb.2000.1281
Menezes JCT, Marini MÂ (2017) Predators of bird nests in the Neotropics: a review. J Field Ornithol 88:99–114. https://doi.org/10.1111/jofo.12203
Muchai M, Du Plessis MA (2005) Nest predation of grassland bird species increases with parental activity at the nest. J Avian Biol 36:110–116. https://doi.org/10.1111/j.0908-8857.2005.03312.x
Mullin SJ, Cooper RJ (1998) The foraging ecology of the Gray Rat Snake (Elaphe obsoleta spiloides) visual stimuli facilitate location of arboreal prey. Am Midl Nat 140:397–401. https://doi.org/10.1674/0003-0031(1998)140[0397:TFEOTG]2.0.CO;2
Nordeide JT, Kekalainen J, Janhunen M, Kortet R (2013) Female ornaments revisited—are they correlated with offspring quality? J Anim Ecol 82:26–38. https://doi.org/10.1111/1365-2656.12021
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, et al. (2020) vegan: community ecology package. R package version 2.5–7. https://CRAN.R-project.org/package=vegan
R Core Team (2018) R: a language and environmente for statistical computing. R Foundation for Statistical Computing, Vienna
Rangen SA, Clark RG, Hobson KA (2000) Visual and olfactory attributes of artificial nests. Auk 117:136–146. https://doi.org/10.1642/0004-8038(2000)117[0136:VAOAOA]2.0.CO;2
Ricklefs RE (1969) An analysis of nesting mortality in birds. Smithson Contrib Zool 9:1–48. https://doi.org/10.5479/si.00810282.9
Santisteban L, Sieving KE, Avery ML (2002) Use of sensory cues by Fish Crows Corvus ossifragus preying on artificial bird nests. J Avian Biol 33:245–252. https://doi.org/10.1034/j.1600-048X.2002.330306.x
Skutch AF (1949) Do tropical birds raise as many young as they can nourish? Ibis 91:430–455. https://doi.org/10.1111/j.1474-919X.1949.tb02293.x
Skutch AF (1985) Clutch size, nesting success, and predation on nests of tropical birds, reviewed. Ornithol Monogr 36:575–594. https://doi.org/10.2307/40168306
Snow DW, Snow BK (1964) Breeding seasons and annual cycles of Trinidad land birds. Zoologica 49:1–39
Söderström B (1999) Artificial nest predation rates in tropical and temperate forests: a review of the effects of edge and nest site. Ecography 22:455–463. https://doi.org/10.1111/j.1600-0587.1999.tb00582.x
Stake MM, Thompson-III F, Faaborg J, Burhans DE (2005) Patterns of snake predation at songbird nests in Missouri and Texas. J Herpetol 39:215–222. https://doi.org/10.1670/150-04A
Stuart-Fox DM, Moussalli A, Marshall NJ, Owens IPF (2003) Conspicuous males suffer higher predation risk: visual modeling and experimental evidence from lizards. Anim Behav 66:541–550. https://doi.org/10.1006/anbe.2003.2235
Tobias JA, Montgomerie R, Lyon BE (2012) The evolution of female ornaments and weaponry: social selection, sexual selection and ecological competition. Phil Trans R Soc Lond B 367:2274–2293. https://doi.org/10.1098/rstb.2011.0280
Thompson-III FR (2007) Factors affecting nest predation on forest songbirds in North America. Ibis 149:98–109. https://doi.org/10.1111/j.1474-919X.2007.00697.x
Weatherhead PJ, Blouin-Demers G (2004) Understanding avian nest predation: why ornithologists should study snake. J Avian Biol 35:185–190. https://doi.org/10.1111/j.0908-8857.2004.03336.x
Whelan CJ, Dilger ML, Robson D, Hallyn N, Dilger S (1994) Effects of olfactory cues on artificial-nest experiments. Auk 111:945–952. https://doi.org/10.2307/4088826
Zahavi A (1975) Mate selection—a selection for a handicap. J Theor Biol 53:205–214. https://doi.org/10.1016/0022-5193(75)90111-3