Visual SLAM for underwater vehicles: A survey
Tài liệu tham khảo
Mandić, 2016, Underwater object tracking using sonar and USBL measurements, J. Sens., 2016, 10.1155/2016/8070286
Smith, 1986, On the representation and estimation of spatial uncertainty, Int. J. Robot. Res., 5, 56, 10.1177/027836498600500404
W. Zhao, T. He, A.Y.M. Sani, T. Yao, Review of SLAM techniques for autonomous underwater vehicles, in: Proceedings of the 2019 International Conference on Robotics, Intelligent Control and Artificial Intelligence, 2019, pp. 384–389.
Torres-González, 2018, Range-only SLAM for robot-sensor network cooperation, Auton. Robots, 42, 649, 10.1007/s10514-017-9663-8
Chiang, 2020, Navigation engine design for automated driving using INS/GNSS/3D LiDAR-SLAM and integrity assessment, Remote Sens., 12, 1564, 10.3390/rs12101564
Palomer, 2016, Multibeam 3D underwater SLAM with probabilistic registration, Sensors, 16, 560, 10.3390/s16040560
Islam, 2020, Fast underwater image enhancement for improved visual perception, IEEE Robot. Autom. Lett., 5, 3227, 10.1109/LRA.2020.2974710
Labbe, 2014, Online global loop closure detection for large-scale multi-session graph-based SLAM, 2661
Cadena, 2016, Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age, IEEE Trans. Robot., 32, 1309, 10.1109/TRO.2016.2624754
Hidalgo, 2015, Review of underwater SLAM techniques, 306
Jiang, 2019, A survey of underwater acoustic SLAM system, 159
Sun, 2017, Improving RGB-D SLAM in dynamic environments: A motion removal approach, Robot. Auton. Syst., 89, 110, 10.1016/j.robot.2016.11.012
Sun, 2018, Motion removal for reliable RGB-D SLAM in dynamic environments, Robot. Auton. Syst., 108, 115, 10.1016/j.robot.2018.07.002
Anwer, 2017, Underwater 3-d scene reconstruction using kinect v2 based on physical models for refraction and time of flight correction, IEEE Access, 5, 15960, 10.1109/ACCESS.2017.2733003
Tsui, 2014, Using a time of flight method for underwater 3-dimensional depth measurements and point cloud imaging, 1
Cho, 2018, Indoor SLAM application using geometric and ICP matching methods based on line features, Robot. Auton. Syst., 100, 206, 10.1016/j.robot.2017.11.011
Mur-Artal, 2015, ORB-SLAM: a versatile and accurate monocular SLAM system, IEEE Trans. Robot., 31, 1147, 10.1109/TRO.2015.2463671
Lowe, 2004, Distinctive image features from scale-invariant keypoints, Int. J. Comput. Vis., 60, 91, 10.1023/B:VISI.0000029664.99615.94
Bay, 2008, Speeded-up robust features (SURF), Comput. Vis. Image Underst., 110, 346, 10.1016/j.cviu.2007.09.014
Rublee, 2011, ORB: An efficient alternative to SIFT or SURF, 2564
Kim, 2009, Pose-graph visual SLAM with geometric model selection for autonomous underwater ship hull inspection, 1559
Eustice, 2004, Visually augmented navigation in an unstructured environment using a delayed state history, 25
Rosten, 2006, Machine learning for high-speed corner detection, 430
Calonder, 2010, Brief: Binary robust independent elementary features, 778
Tareen, 2018, A comparative analysis of sift, surf, kaze, akaze, orb, and brisk, 1
Iqbal, 2020, Data association and localization of classified objects in visual SLAM, J. Intell. Robot. Syst., 100, 113, 10.1007/s10846-020-01189-x
Aulinas, 2011, Feature extraction for underwater visual SLAM, 1
Galdran, 2015, Automatic red-channel underwater image restoration, J. Vis. Commun. Image Represent., 26, 132, 10.1016/j.jvcir.2014.11.006
Schettini, 2010, Underwater image processing: state of the art of restoration and image enhancement methods, EURASIP J. Adv. Signal Process., 2010, 1, 10.1155/2010/746052
Cho, 2017, Visibility enhancement for underwater visual SLAM based on underwater light scattering model, 710
Salvi, 2008, Visual slam for underwater vehicles using video velocity log and natural landmarks, 1
Cho, 2018, Channel invariant online visibility enhancement for visual SLAM in a turbid environment, J. Field Robotics, 35, 1080, 10.1002/rob.21796
Durrant-Whyte, 2006, Simultaneous localization and mapping: part I, IEEE Robot. Autom. Mag., 13, 99, 10.1109/MRA.2006.1638022
J. Aulinas, Y.R. Petillot, X. Lladó, J. Salvi, R. Garcia, Vision-based underwater SLAM for the SPARUS AUV, in: Proceedings of the 10th International Conference on Computer and IT Applications in the Maritime Industries. Germany, 2011, pp. 171–179.
Eustice, 2008, Visually augmented navigation for autonomous underwater vehicles, IEEE J. Ocean. Eng., 33, 103, 10.1109/JOE.2008.923547
Li, 2010, Square-root unscented Kalman filter based simultaneous localization and mapping, 2384
Maki, 2006, Photo mosaicing of tagiri shallow vent area by the auv tri-dog 1 using a slam based navigation scheme, 1
Kümmerle, 2011, G 2 o: A general framework for graph optimization, 3607
Polok, 2013, Incremental block cholesky factorization for nonlinear least squares in robotics, Robot.: Sci. Syst., 328
Ferreira, 2012, Real-time optical SLAM-based mosaicking for unmanned underwater vehicles, Intell. Serv. Robot., 5, 55, 10.1007/s11370-011-0103-x
Mahon, 2008, Efficient view-based SLAM using visual loop closures, IEEE Trans. Robot., 24, 1002, 10.1109/TRO.2008.2004888
Aulinas, 2010, Selective submap joining for underwater large scale 6-DOF SLAM, 2552
Burguera, 2014, Towards robust image registration for underwater visual slam, 539
Hong, 2016, A robust loop-closure method for visual SLAM in unstructured seafloor environments, Auton. Robots, 40, 1095, 10.1007/s10514-015-9512-6
Yuan, 2017, AEKF-SLAM: a new algorithm for robotic underwater navigation, Sensors, 17, 1174, 10.3390/s17051174
Augenstein, 2011, Improved frame-to-frame pose tracking during vision-only SLAM/SFM with a tumbling target, 3131
Montemerlo, 2003, FastSLAM 2.0: An improved particle filtering algorithm for simultaneous localization and mapping that provably converges, 1151
Salvi, 2008, Visual SLAM for 3D large-scale seabed acquisition employing underwater vehicles, 1011
Meireles, 2014, Real time visual SLAM for underwater robotic inspection, 1
Pi, 2014, Stereo visual SLAM system in underwater environment, 1
Prats, 2012, An open source tool for simulation and supervision of underwater intervention missions, 2577
Burguera, 2018, Towards multi session visual SLAM in underwater environments colonized with posidonia oceanica, 1
Burguera Burguera, 2019, A trajectory-based approach to multi-session underwater visual slam using global image signatures, J. Mar. Sci. Eng., 7, 278, 10.3390/jmse7080278
Dubbelman, 2015, COP-SLAM: Closed-form online pose-chain optimization for visual SLAM, IEEE Trans. Robot., 31, 1194, 10.1109/TRO.2015.2473455
Du, 2017, View-based underwater SLAM using a stereo camera, 1
Hong, 2020, Three-dimensional visual mapping of underwater ship hull surface using piecewise-planar slam, Int. J. Control Autom. Syst., 18, 564, 10.1007/s12555-019-0646-8
Kim, 2013, Real-time visual SLAM for autonomous underwater hull inspection using visual saliency, IEEE Trans. Robot., 29, 719, 10.1109/TRO.2012.2235699
E. Westman, M. Kaess, Underwater AprilTag SLAM and Calibration for High Precision Robot Localization, tech. rep., 2018.
Rahman, 2019, Svin2: an underwater slam system using sonar, visual, inertial, and depth sensor, 1861
Rahman, 2018, Sonar visual inertial SLAM of underwater structures, 5190
Vargas, 2021, Robust underwater visual SLAM fusing acoustic sensing, 2140
S. Xu, T. Luczynski, J.S. Willners, Z. Hong, K. Zhang, Y.R. Petillot, S. Wang, Underwater Visual Acoustic SLAM with Extrinsic Calibration, in: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, IEEE, pp. 7647–7652.
Sáez, 2006, Underwater 3D SLAM through entropy minimization, 3562
Chaves, 2016, Opportunistic sampling-based active visual SLAM for underwater inspection, Auton. Robots, 40, 1245, 10.1007/s10514-016-9597-6
Kim, 2015, Active visual SLAM for robotic area coverage: Theory and experiment, Int. J. Robot. Res., 34, 457, 10.1177/0278364914547893
Silveira, 2013, 3D robotic mapping: A biologic approach, 1
Milford, 2008, Mapping a suburb with a single camera using a biologically inspired SLAM system, IEEE Trans. Robot., 24, 1038, 10.1109/TRO.2008.2004520
Guth, 2014, Underwater SLAM: Challenges, state of the art, algorithms and a new biologically-inspired approach, 981
Silveira, 2015, An open-source bio-inspired solution to underwater SLAM, IFAC-PapersOnLine, 48, 212, 10.1016/j.ifacol.2015.06.035
Cummins, 2008, FAB-MAP: Probabilistic localization and mapping in the space of appearance, Int. J. Robot. Res., 27, 647, 10.1177/0278364908090961
Duarte, 2016, Towards comparison of underwater SLAM methods: An open dataset collection, 1
Joshi, 2019, Experimental comparison of open source visual-inertial-based state estimation algorithms in the underwater domain, 7227
Chen, 2020, Active SLAM for mobile robots with area coverage and obstacle avoidance, IEEE/ASME Trans. Mechatronics, 25, 1182, 10.1109/TMECH.2019.2963439
McDonald, 2013
Jang, 2021, Multi-session underwater pose-graph SLAM using inter-session opti-acoustic two-view factor, 11668
Han, 2018, A geometric information fused loop closing method for visual SLAM, Inf. Technol., 320, 143
Newman, 2005, SLAM-loop closing with visually salient features, 635
Endres, 2013, 3-D mapping with an RGB-D camera, IEEE Trans. Robot., 30, 177, 10.1109/TRO.2013.2279412
Gu, 2019, Environment driven underwater camera-IMU calibration for monocular visual-inertial SLAM, 2405
Bonin-Font, 2014, LSH for loop closing detection in underwater visual SLAM, 1
Negre Carrasco, 2016, Global image signature for visual loop-closure detection, Auton. Robots, 40, 1403, 10.1007/s10514-015-9522-4
Lajoie, 2019, Modeling perceptual aliasing in slam via discrete–continuous graphical models, IEEE Robot. Autom. Lett., 4, 1232, 10.1109/LRA.2019.2894852
Shen, 2017, Deep learning in medical image analysis, Annu. Rev. Biomed. Eng., 19, 221, 10.1146/annurev-bioeng-071516-044442
Sorin, 2020, Deep learning for natural language processing in radiology—fundamentals and a systematic review, J. Am. Coll. Radiol., 17, 639, 10.1016/j.jacr.2019.12.026
Zhang, 2018, A survey on deep learning for big data, Inf. Fusion, 42, 146, 10.1016/j.inffus.2017.10.006
Burguera, 2020, An unsupervised neural network for loop detection in underwater visual SLAM, J. Intell. Robot. Syst., 100, 1157, 10.1007/s10846-020-01235-8
Bonin-Font, 2021, NetHALOC: A learned global image descriptor for loop closing in underwater visual SLAM, Expert Syst., 38, 10.1111/exsy.12635
Yan, 2017, Dense visual SLAM with probabilistic surfel map, IEEE Trans. Vis. Comput. Graphics, 23, 2389, 10.1109/TVCG.2017.2734458
Yeh, 2021, Robust 3D reconstruction using HDR-based SLAM, IEEE Access, 9, 16568, 10.1109/ACCESS.2021.3051257
Koide, 2020, Interactive 3D graph SLAM for map correction, IEEE Robot. Autom. Lett., 6, 40, 10.1109/LRA.2020.3028828
Long, 2020, PSPNet-SLAM: A semantic SLAM detect dynamic object by pyramid scene parsing network, IEEE Access, 8, 10.1109/ACCESS.2020.3041038
Ferrera, 2019, AQUALOC: An underwater dataset for visual–inertial–pressure localization, Int. J. Robot. Res., 38, 1549, 10.1177/0278364919883346
M. Bewley, B. Douillard, N. Nourani-Vatani, A. Friedman, O. Pizarro, S. Williams, Automated species detection: An experimental approach to kelp detection from sea-floor AUV images, in: Proc Australas Conf Rob Autom, 2012.
Steinberg, 2010, Towards autonomous habitat classification using Gaussian mixture models, 4424
Friedman, 2011, Active learning using a variational dirichlet process model for pre-clustering and classification of underwater stereo imagery, 1533