Visual SLAM for underwater vehicles: A survey

Computer Science Review - Tập 46 - Trang 100510 - 2022
Song Zhang1,2, Shili Zhao1,2, Dong An1,2, Jincun Liu1,2, He Wang1,2, Yu Feng1,2, Daoliang Li1,2,3,4,5, Ran Zhao1,2
1College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
2National Innovation Center for Digital Fishery, China Agricultural University, China
3Beijing Engineering and Technology Research Centre for Internet of Things in Agriculture China Agriculture University, Beijing 100083, China
4China-EU Center for Information and Communication Technologies in Agriculture, China Agriculture University Beijing 100083, China
5Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agriculture University, Beijing 100083, China

Tài liệu tham khảo

Mandić, 2016, Underwater object tracking using sonar and USBL measurements, J. Sens., 2016, 10.1155/2016/8070286 Smith, 1986, On the representation and estimation of spatial uncertainty, Int. J. Robot. Res., 5, 56, 10.1177/027836498600500404 W. Zhao, T. He, A.Y.M. Sani, T. Yao, Review of SLAM techniques for autonomous underwater vehicles, in: Proceedings of the 2019 International Conference on Robotics, Intelligent Control and Artificial Intelligence, 2019, pp. 384–389. Torres-González, 2018, Range-only SLAM for robot-sensor network cooperation, Auton. Robots, 42, 649, 10.1007/s10514-017-9663-8 Chiang, 2020, Navigation engine design for automated driving using INS/GNSS/3D LiDAR-SLAM and integrity assessment, Remote Sens., 12, 1564, 10.3390/rs12101564 Palomer, 2016, Multibeam 3D underwater SLAM with probabilistic registration, Sensors, 16, 560, 10.3390/s16040560 Islam, 2020, Fast underwater image enhancement for improved visual perception, IEEE Robot. Autom. Lett., 5, 3227, 10.1109/LRA.2020.2974710 Labbe, 2014, Online global loop closure detection for large-scale multi-session graph-based SLAM, 2661 Cadena, 2016, Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age, IEEE Trans. Robot., 32, 1309, 10.1109/TRO.2016.2624754 Hidalgo, 2015, Review of underwater SLAM techniques, 306 Jiang, 2019, A survey of underwater acoustic SLAM system, 159 Sun, 2017, Improving RGB-D SLAM in dynamic environments: A motion removal approach, Robot. Auton. Syst., 89, 110, 10.1016/j.robot.2016.11.012 Sun, 2018, Motion removal for reliable RGB-D SLAM in dynamic environments, Robot. Auton. Syst., 108, 115, 10.1016/j.robot.2018.07.002 Anwer, 2017, Underwater 3-d scene reconstruction using kinect v2 based on physical models for refraction and time of flight correction, IEEE Access, 5, 15960, 10.1109/ACCESS.2017.2733003 Tsui, 2014, Using a time of flight method for underwater 3-dimensional depth measurements and point cloud imaging, 1 Cho, 2018, Indoor SLAM application using geometric and ICP matching methods based on line features, Robot. Auton. Syst., 100, 206, 10.1016/j.robot.2017.11.011 Mur-Artal, 2015, ORB-SLAM: a versatile and accurate monocular SLAM system, IEEE Trans. Robot., 31, 1147, 10.1109/TRO.2015.2463671 Lowe, 2004, Distinctive image features from scale-invariant keypoints, Int. J. Comput. Vis., 60, 91, 10.1023/B:VISI.0000029664.99615.94 Bay, 2008, Speeded-up robust features (SURF), Comput. Vis. Image Underst., 110, 346, 10.1016/j.cviu.2007.09.014 Rublee, 2011, ORB: An efficient alternative to SIFT or SURF, 2564 Kim, 2009, Pose-graph visual SLAM with geometric model selection for autonomous underwater ship hull inspection, 1559 Eustice, 2004, Visually augmented navigation in an unstructured environment using a delayed state history, 25 Rosten, 2006, Machine learning for high-speed corner detection, 430 Calonder, 2010, Brief: Binary robust independent elementary features, 778 Tareen, 2018, A comparative analysis of sift, surf, kaze, akaze, orb, and brisk, 1 Iqbal, 2020, Data association and localization of classified objects in visual SLAM, J. Intell. Robot. Syst., 100, 113, 10.1007/s10846-020-01189-x Aulinas, 2011, Feature extraction for underwater visual SLAM, 1 Galdran, 2015, Automatic red-channel underwater image restoration, J. Vis. Commun. Image Represent., 26, 132, 10.1016/j.jvcir.2014.11.006 Schettini, 2010, Underwater image processing: state of the art of restoration and image enhancement methods, EURASIP J. Adv. Signal Process., 2010, 1, 10.1155/2010/746052 Cho, 2017, Visibility enhancement for underwater visual SLAM based on underwater light scattering model, 710 Salvi, 2008, Visual slam for underwater vehicles using video velocity log and natural landmarks, 1 Cho, 2018, Channel invariant online visibility enhancement for visual SLAM in a turbid environment, J. Field Robotics, 35, 1080, 10.1002/rob.21796 Durrant-Whyte, 2006, Simultaneous localization and mapping: part I, IEEE Robot. Autom. Mag., 13, 99, 10.1109/MRA.2006.1638022 J. Aulinas, Y.R. Petillot, X. Lladó, J. Salvi, R. Garcia, Vision-based underwater SLAM for the SPARUS AUV, in: Proceedings of the 10th International Conference on Computer and IT Applications in the Maritime Industries. Germany, 2011, pp. 171–179. Eustice, 2008, Visually augmented navigation for autonomous underwater vehicles, IEEE J. Ocean. Eng., 33, 103, 10.1109/JOE.2008.923547 Li, 2010, Square-root unscented Kalman filter based simultaneous localization and mapping, 2384 Maki, 2006, Photo mosaicing of tagiri shallow vent area by the auv tri-dog 1 using a slam based navigation scheme, 1 Kümmerle, 2011, G 2 o: A general framework for graph optimization, 3607 Polok, 2013, Incremental block cholesky factorization for nonlinear least squares in robotics, Robot.: Sci. Syst., 328 Ferreira, 2012, Real-time optical SLAM-based mosaicking for unmanned underwater vehicles, Intell. Serv. Robot., 5, 55, 10.1007/s11370-011-0103-x Mahon, 2008, Efficient view-based SLAM using visual loop closures, IEEE Trans. Robot., 24, 1002, 10.1109/TRO.2008.2004888 Aulinas, 2010, Selective submap joining for underwater large scale 6-DOF SLAM, 2552 Burguera, 2014, Towards robust image registration for underwater visual slam, 539 Hong, 2016, A robust loop-closure method for visual SLAM in unstructured seafloor environments, Auton. Robots, 40, 1095, 10.1007/s10514-015-9512-6 Yuan, 2017, AEKF-SLAM: a new algorithm for robotic underwater navigation, Sensors, 17, 1174, 10.3390/s17051174 Augenstein, 2011, Improved frame-to-frame pose tracking during vision-only SLAM/SFM with a tumbling target, 3131 Montemerlo, 2003, FastSLAM 2.0: An improved particle filtering algorithm for simultaneous localization and mapping that provably converges, 1151 Salvi, 2008, Visual SLAM for 3D large-scale seabed acquisition employing underwater vehicles, 1011 Meireles, 2014, Real time visual SLAM for underwater robotic inspection, 1 Pi, 2014, Stereo visual SLAM system in underwater environment, 1 Prats, 2012, An open source tool for simulation and supervision of underwater intervention missions, 2577 Burguera, 2018, Towards multi session visual SLAM in underwater environments colonized with posidonia oceanica, 1 Burguera Burguera, 2019, A trajectory-based approach to multi-session underwater visual slam using global image signatures, J. Mar. Sci. Eng., 7, 278, 10.3390/jmse7080278 Dubbelman, 2015, COP-SLAM: Closed-form online pose-chain optimization for visual SLAM, IEEE Trans. Robot., 31, 1194, 10.1109/TRO.2015.2473455 Du, 2017, View-based underwater SLAM using a stereo camera, 1 Hong, 2020, Three-dimensional visual mapping of underwater ship hull surface using piecewise-planar slam, Int. J. Control Autom. Syst., 18, 564, 10.1007/s12555-019-0646-8 Kim, 2013, Real-time visual SLAM for autonomous underwater hull inspection using visual saliency, IEEE Trans. Robot., 29, 719, 10.1109/TRO.2012.2235699 E. Westman, M. Kaess, Underwater AprilTag SLAM and Calibration for High Precision Robot Localization, tech. rep., 2018. Rahman, 2019, Svin2: an underwater slam system using sonar, visual, inertial, and depth sensor, 1861 Rahman, 2018, Sonar visual inertial SLAM of underwater structures, 5190 Vargas, 2021, Robust underwater visual SLAM fusing acoustic sensing, 2140 S. Xu, T. Luczynski, J.S. Willners, Z. Hong, K. Zhang, Y.R. Petillot, S. Wang, Underwater Visual Acoustic SLAM with Extrinsic Calibration, in: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, IEEE, pp. 7647–7652. Sáez, 2006, Underwater 3D SLAM through entropy minimization, 3562 Chaves, 2016, Opportunistic sampling-based active visual SLAM for underwater inspection, Auton. Robots, 40, 1245, 10.1007/s10514-016-9597-6 Kim, 2015, Active visual SLAM for robotic area coverage: Theory and experiment, Int. J. Robot. Res., 34, 457, 10.1177/0278364914547893 Silveira, 2013, 3D robotic mapping: A biologic approach, 1 Milford, 2008, Mapping a suburb with a single camera using a biologically inspired SLAM system, IEEE Trans. Robot., 24, 1038, 10.1109/TRO.2008.2004520 Guth, 2014, Underwater SLAM: Challenges, state of the art, algorithms and a new biologically-inspired approach, 981 Silveira, 2015, An open-source bio-inspired solution to underwater SLAM, IFAC-PapersOnLine, 48, 212, 10.1016/j.ifacol.2015.06.035 Cummins, 2008, FAB-MAP: Probabilistic localization and mapping in the space of appearance, Int. J. Robot. Res., 27, 647, 10.1177/0278364908090961 Duarte, 2016, Towards comparison of underwater SLAM methods: An open dataset collection, 1 Joshi, 2019, Experimental comparison of open source visual-inertial-based state estimation algorithms in the underwater domain, 7227 Chen, 2020, Active SLAM for mobile robots with area coverage and obstacle avoidance, IEEE/ASME Trans. Mechatronics, 25, 1182, 10.1109/TMECH.2019.2963439 McDonald, 2013 Jang, 2021, Multi-session underwater pose-graph SLAM using inter-session opti-acoustic two-view factor, 11668 Han, 2018, A geometric information fused loop closing method for visual SLAM, Inf. Technol., 320, 143 Newman, 2005, SLAM-loop closing with visually salient features, 635 Endres, 2013, 3-D mapping with an RGB-D camera, IEEE Trans. Robot., 30, 177, 10.1109/TRO.2013.2279412 Gu, 2019, Environment driven underwater camera-IMU calibration for monocular visual-inertial SLAM, 2405 Bonin-Font, 2014, LSH for loop closing detection in underwater visual SLAM, 1 Negre Carrasco, 2016, Global image signature for visual loop-closure detection, Auton. Robots, 40, 1403, 10.1007/s10514-015-9522-4 Lajoie, 2019, Modeling perceptual aliasing in slam via discrete–continuous graphical models, IEEE Robot. Autom. Lett., 4, 1232, 10.1109/LRA.2019.2894852 Shen, 2017, Deep learning in medical image analysis, Annu. Rev. Biomed. Eng., 19, 221, 10.1146/annurev-bioeng-071516-044442 Sorin, 2020, Deep learning for natural language processing in radiology—fundamentals and a systematic review, J. Am. Coll. Radiol., 17, 639, 10.1016/j.jacr.2019.12.026 Zhang, 2018, A survey on deep learning for big data, Inf. Fusion, 42, 146, 10.1016/j.inffus.2017.10.006 Burguera, 2020, An unsupervised neural network for loop detection in underwater visual SLAM, J. Intell. Robot. Syst., 100, 1157, 10.1007/s10846-020-01235-8 Bonin-Font, 2021, NetHALOC: A learned global image descriptor for loop closing in underwater visual SLAM, Expert Syst., 38, 10.1111/exsy.12635 Yan, 2017, Dense visual SLAM with probabilistic surfel map, IEEE Trans. Vis. Comput. Graphics, 23, 2389, 10.1109/TVCG.2017.2734458 Yeh, 2021, Robust 3D reconstruction using HDR-based SLAM, IEEE Access, 9, 16568, 10.1109/ACCESS.2021.3051257 Koide, 2020, Interactive 3D graph SLAM for map correction, IEEE Robot. Autom. Lett., 6, 40, 10.1109/LRA.2020.3028828 Long, 2020, PSPNet-SLAM: A semantic SLAM detect dynamic object by pyramid scene parsing network, IEEE Access, 8, 10.1109/ACCESS.2020.3041038 Ferrera, 2019, AQUALOC: An underwater dataset for visual–inertial–pressure localization, Int. J. Robot. Res., 38, 1549, 10.1177/0278364919883346 M. Bewley, B. Douillard, N. Nourani-Vatani, A. Friedman, O. Pizarro, S. Williams, Automated species detection: An experimental approach to kelp detection from sea-floor AUV images, in: Proc Australas Conf Rob Autom, 2012. Steinberg, 2010, Towards autonomous habitat classification using Gaussian mixture models, 4424 Friedman, 2011, Active learning using a variational dirichlet process model for pre-clustering and classification of underwater stereo imagery, 1533