Visual Mental Imagery Induces Retinotopically Organized Activation of Early Visual Areas

Cerebral Cortex - Tập 15 Số 10 - Trang 1570-1583 - 2005
Scott D. Slotnick1, William L. Thompson, Stephen M. Kosslyn
1Department of Psychology, Boston College, McGuinn Hall, Chestnut Hill, MA 02467, USA. [email protected]

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aguirre GK, Zarahn E, D'Esposito M (1997) Empirical analysis of BOLD fMRI statistics. Neuroimage5:199–212.

Beauchamp MS, Lee KE, Haxby JV, Martin A (2002) Parallel visual motion processing streams for manipulable objects and human movements. Neuron34:149–159.

Brefczynski JA, DeYoe EA (1999) A physiological correlate of the ‘spotlight’ of visual attention. Nat Neurosci2:370–374.

Caplan D, Moo L (2004) Cognitive conjunctions and cognitive functions. Neuroimage21:751–756.

Craver-Lemley C, Reeves A (1992) How visual imagery interferes with vision. Psychol Rev99:633–649.

Cohen MS (1997) Parametric analysis of fMRI data using linear systems methods. Neuroimage6:93–103.

Corbetta M, Kincade JM, Ollinger JM, McAvoy MP, Shulman GL (2000) Voluntary orienting is dissociated from target detection in human parietal cortex. Nat Neurosci3:292–297.

Corbetta M, Kincade JM, Shulman GL (2002) Neural systems for visual orienting and their relationships to spatial working memory. J Cogn Neurosci14:508–523.

DeYoe EA, Carman GJ, Bandettini P, Glickman S, Wieser J, Cox R, Miller D, Neitz J (1996) Mapping striate and extrastriate visual areas in human cerebral cortex. Proc Natl Acad Sci USA93:2382–2386.

Engel SA, Glover GH, Wandell BA (1997) Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb Cortex7:181–192.

Friston K.J, Holmes AP, Price CJ, Buchel C, Worsley KJ (1999) Multisubject fMRI studies and conjunction analysis. Neuroimage10:385–396.

Ganis G, Thompson WL, Kosslyn S M (2004) Brain areas underlying visual mental imagery and visual perception: an fMRI study. Cogn Brain Res20:226–241.

Holmes G (1917) Disturbances of vision by cerebral lesions. Br J Opthalmol2:353–384.

Holmes G (1945) The organization of the visual cortex in man. R Soc Lond Ser B Biol132:348–361.

Holmes G, Lister WT (1916) Disturbances of vision from cerebral lesions with special reference to the cortical representation of the macula. Brain39:34–73.

Hopfinger JB, Buonocore MH, Mangun GR (2000) The neural mechanisms of top-down attentional control. Nat Neurosci3:284–291.

Hopfinger JB, Woldorff MG, Fletcher EM, Mangun GR (2001) Dissociating top-down attentional control from selective perception and action. Neuropsychologia39:1277–1291.

Horton JC, Hoyt WF (1991a) The representation of the visual field in human striate cortex. Arch Ophthalmol109:816–824.

Horton JC, Hoyt WF (1991b) Quadrantic visual field deficits. Brain114:1703–1708.

Huk AC, Dougherty RF, Heeger DJ (2002) Retinotopy and functional subdivision of human areas MT and MST. J Neurosci22:7195–7205.

Inouye T (1909) Die Sehstorungen bei Schussverletzungen der kortikalen Sehsphare nach Beobachtungen an Verwundeten der letzten japanischen Kriege. Leipzig: W. Engelmann.

Ishai A, Haxby JV, Ungerleider LG (2002) Visual imagery of famous faces: effects of memory and attention revealed by fMRI. Neuroimage17:1729–1741.

Klein I, Dubois J, Mangin J-F, Kherif F, Flandin G, Poline J-B, Denis M, Kosslyn SM, Le Bihan D (2004) Retinotopic organization of visual mental images as revealed by functional magnetic resonance imaging. Cogn Brain Res22:26–31.

Kosslyn SM (1994) Image and brain: the resolution of the imagery debate. Cambridge, MA: MIT Press.

Kosslyn SM, Thompson WL (2003) When is early visual cortex activated during visual mental imagery. Psychol Bull129:723–746.

Kosslyn SM, Alpert NM, Thompson WL, Maljkovic V, Weise SB, Chabris CF, Hamilton SE, Rausch SL, Buonanno FS (1993) Visual mental imagery activates topographically organized visual cortex: PET investigations. J Cogn Neurosci5:263–287.

Kosslyn SM, Thompson WL, Kim IJ, Alpert NM (1995) Topographical representations of mental images in primary visual cortex. Nature378:496–498.

Kosslyn SM, Thompson WL, Kim IJ, Rauch SL, Alpert NM (1996) Individual differences in cerebral blood flow in area 17 predict the time to evaluate visualized letters. J Cogn Neurosci8:78–82.

Kosslyn SM, Thompson WL, Alpert NM (1997) Neural systems shared by visual imagery and visual perception: a positron emission tomography study. Neuroimage6:320–334.

Kosslyn SM, Pascual-Leone A, Felician O, Camposano S, Keenan JP, Thompson WL, Ganis G, Sukel KE, Alpert NM (1999) The role of area 17 in visual imagery: convergent evidence from PET and rTMS. Science284:167–170.

Kosslyn SM, Ganis G, Thompson WL (2001) Neural foundations of imagery. Nat Rev Neurosci2:635–642.

Kosslyn SM, Thompson WL, Shephard JM, Ganis G, Bell D, Danovitch J, Wittenberg LA, Alpert NM (2004) Brain rCBF and performance in visual imagery tasks: common and distinct processes. Eur J Cogn Psychol16:696–716.

Kourtzi Z, Bülthoff HH, Erb M, Grodd W (2002) Object-selective responses in the human motion area MT/MST. Nat Neurosci5:17–18.

Le Bihan D, Turner R, Zeffiro TA, Cuénod CA, Jezzard P, Bonnerot V (1993) Activation of human primary visual cortex during visual recall: a magnetic resonance imaging study. Proc Natl Acad Sci90:11802–11805.

Liu T, Slotnick SD, Serences JT, Yantis S (2003) Cortical mechanisms of feature-based attentional control. Cereb Cortex13:1334–1343.

Mellet E, Tzourio N, Crivello F, Joliot M, Denis M, Mazoyer B (1996) Functional anatomy of spatial mental imagery generated from verbal instructions. J Neurosci16:6504–6512.

Muckli L, Kriegeskorte N, Lanfermann H, Zanella FE, Singer W, Goebel R (2002) Apparent motion: event-related functional magnetic resonance imaging of perceptual switches and states. J Neurosci22:RC219.

Pylyshyn ZW (1973) What the mind's eye tells the mind's brain: a critique of mental imagery. Psychol Bull80:1–24.

Pylyshyn ZW (2002) Mental imagery: in search of a theory. Behav Brain Sci25:157–238.

Rees G, Friston K, Koch C (2000) A direct quantitative relationship between the functional properties of human and macaque V5. Nat Neurosci3:716–723.

Salzman CD, Murasugi CM, Britten KH, Newsome WT (1992) Microstimulation in visual area MT: effects on direction discrimination performance. J Neurosci12:2331–2355.

Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell RBH (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science268:889–893.

Slotnick SD (2004) Cluster threshold beta. http://www.wjh.harvard.edu/∼slotnick/scripts.htm, retrieved May 3.

Slotnick SD, Moo LR (2003) Retinotopic mapping reveals extrastriate cortical basis of homonymous quadrantanopia. Neuroreport14:1209–1213.

Slotnick SD, Schacter DL (2004) A sensory signature that distinguishes true from false memories. Nat Neurosci7:664–672.

Slotnick SD, Yantis S (2003) Efficient acquisition of human retinotopic maps. Hum Brain Mapp18:22–29.

Slotnick SD, Klein SA, Carney T, Sutter EE (2001) Electrophysiological estimate of human cortical magnification. Clin Neurophysiol112:1349–1356.

Slotnick SD, Moo LR, Krauss G, Hart J (2002) Large-scale cortical displacement of a human retinotopic map. Neuroreport13:41–46.

Slotnick SD, Schwarzbach J, Yantis S (2003) Attentional inhibition of visual processing in human striate and extrastriate cortex. Neuroimage19:1602–1611.

Sunaert S, Van Hecke P, Marchal G, Orban GA (1999) Motion-responsive regions of the human brain. Exp Brain Res127:355–370.

Sunaert S, Van Hecke P, Marchal G, Orban GA (2000) Attention to speed of motion, speed discrimination, and task difficulty: an fMRI study. Neuroimage11:612–623.

Talairach J, Tournoux P (1988) Co-planar stereotaxic axis of the human brain. New York: Thieme.

Tootell RBH, Hadjikhani NK, Mendola JD, Marrett S, Dale AM (1998) From retinotopy to recognition: fMRI in human visual cortex. Trends Cogn Sci2:161–201.

Watson JD, Myers R, Frackowiak RS, Hajnal JV, Woods RP, Mazziotta JC, Shipp S, Zeki S (1993) Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. Cereb Cortex3:79–94.