Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures

Nature Chemistry - Tập 3 Số 6 - Trang 467-472 - 2011
Phillip Christopher1, Hongliang Xin2, Suljo Linic2
1Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, 48109 USA
2Department of Chemical Engineering, University of Michigan, Ann Arbor, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Hammer, B. & Nørskov, J. K. Why gold is the noblest of all the metals. Nature 376, 238–240 (1995).

Wittstock, A., Zielasek, V., Biener, J., Friend, C. M. & Baumer, M. Nanoporous gold catalysts for selective gas-phase oxidative methanol at low temperature. Science 327, 319–322 (2010).

Campbell, C. T., Parker, S. C. & Starr, D. E. The effect of size-dependent nanoparticle energetics on catalyst sintering. Science 298, 811–814 (2002).

Lei, Y. et al. Increased silver activity for direct propylene epoxidation via subnanometer size effects. Science 328, 224–228 (2010).

Lu, J. et al. In-situ UV-vis studies of the effect of particle size on the epoxidation of ethylene and propylene on supported silver catalysts with molecular oxygen. J. Catal. 232, 85–95 (2005).

Tian, N., Zhou, Z., Sun, S., Ding, Y. & Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316, 732–735 (2007).

Chen, M., Kumar, D., Yi, C. W. & Goodman, D. W. The promotional effect of gold in catalysis by palladium–gold. Science 310, 291–293 (2005).

Studt, F. et al. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science 320, 1320–1322 (2008).

Sabatier, P. Hydrogenations et deshydrogenations per catalyse. Ber. Deut. Chem. Ges. 44, 1984–2001 (1911).

Link, S. & El-Sayed, M. A. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 103, 4212–4217 (1999).

Christopher, P., Ingram, D. B. & Linic, S. Enhancing photochemical activity of semiconductor nanoparticles with optically active Ag nanostructures: photochemistry mediated by Ag surface plasmons. J. Phys. Chem. C 114, 9173–9177 (2010).

Jin R. et al. Photoinduced conversion of silver nanospheres to nanoprisms. Science 294, 1901–1903 (2001).

Jin R. et al. Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425, 487–490 (2003).

Adleman, J. R., Boyd, D. A., Goodwin, D. G. & Psaltis, D. Heterogeneous catalysis mediated by plasmon heating. Nano Lett. 9, 4417–4423 (2009).

Mori, K., Kawashima, M., Che, M. & Yamashita, H. Enhancement of the photoinduced oxidation activity of a ruthenium(II) complex anchored on silica-coated silver nanoparticles by localized surface plasmon resonance. Angew. Chem. Int. Ed. 49, 8598–8601.

Awazu, H. et al. A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J. Am. Chem. Soc. 130, 1676–1680 (2008).

Dai, H.-L. & Ho, W. Laser Spectroscopy and Photochemistry on Metal Surfaces (World Scientific, 1995).

Buntin, S. A., Richter, L. J., Cavanagh, R. R. & King, D. S. Optically driven surface reactions: evidence for the role of hot electrons. Phys. Rev. Lett. 61, 1321–1324 (1988).

Prybyla, J. A., Heinz, T. F., Misewich, J. A., Loy, M. M. T. & Glownia, J. H. Desorption induced by femtosecond laser pulses. Phys. Rev. Lett. 64, 1537–1540 (1990).

Gadzuk, J. W. Resonance-assisted hot electron femtochemistry at surfaces. Phys. Rev. Lett. 76, 4234–4237 (1996).

Her, T.-H., Finlay, R. J., Wu, C. & Mazur, E. Surface femtochemistry of CO/O2/Pt(111): the importance of nonthermalized substrate electrons. J. Chem. Phys. 108, 8595–8598 (1998).

Mulugeta, D., Kim, K. H., Watanabe, K., Menzel, D. & Freund, H.-J. Size effects in thermal and photochemistry of (NO)2 on Ag nanoparticles. Phys Rev. Lett. 101, 146103 (2008)

Hatch, S. R., Zhu, X.-Y., White, J. M. & Campion, A. Photoinduced pathways to dissociation and desorption of dioxygen on Ag(110) and Pt(111). J. Phys. Chem. 95, 1759–1768 (1991).

So, S. K., Franchy, R. & Ho, W. Photodesorption of NO from Ag(111) and Cu(111). J. Chem. Phys. 95, 1385–1399 (1991).

Mieher, W. D. & Ho, W. Bimolecular surface photochemistry: mechanisms of CO oxidation on Pt(111) at 85 K. J. Chem. Phys. 99, 9279–9295 (1993).

Qu, Z., Cheng, M., Huang, W. & Bao, X. Formation of subsurface oxygen species and its high activity toward CO oxidation over silver catalysts. J. Catal. 229, 446–458 (2005).

Gang, L., Anderson, B. G., van Grondelle, J. & van Santen, R. A. Low temperature selective oxidation of ammonia to nitrogen on silver-based catalysts. Appl. Catal. B 40, 101–110 (2003).

Christopher, P. & Linic, S. Shape- and size-specific chemistry of Ag nanostructures in catalytic ethylene epoxidation. ChemCatChem 2, 78–83 (2010).

Christopher, P. & Linic, S. Engineering selectivity in heterogeneous catalysis: Ag nanowires as selective ethylene epoxidation catalysts. J. Am. Chem. Soc. 130, 11264–11265 (2008).

Park, D. W. & Gau, G. Ethylene epoxidation on a silver catalyst: unsteady and steady state kinetics. J. Catal. 105, 81–94 (1987).

Gavriilidis, A. & Varma, A. Optimal catalyst activity profiles in pellets: 9. Study of ethylene epoxidation. AIChE J. 38, 291–296 (1992).

Campbell, C. T. & Paffett, M. T. Model studies of ethylene epoxidation catalyzed by the Ag(110) surface. Surf. Sci. 139, 396–416 (1984).

Wynblatt, P. & Gjostein, N. Particle growth in model supported metal catalysts – 1. Theory. Acta Metall. 24, 1165–1174 (1976).

Brus, L. Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule Raman spectroscopy. Acc. Chem. Res. 41, 1742–1749 (2008).

Jain, P. K., Huang, X., El-Sayed, I. H. & El-Sayed, M. A. Noble metals on the nanoscale: optical and photo-thermal properties and some applications in imaging, sensing, biology and medicine. Acc. Chem. Res. 41, 1578–1586 (2008).

Prodan, E., Radloff, C., Halas, N. J. & Norlander, P. A hybridization model for the plasmon resonance of complex nanostructures. Science 302, 419–422 (2003).

Bukhtiyarov, V. I. et al. Atomic oxygen species on silver: photoelectron spectroscopy and x-ray absorption studies. Phys. Rev. B 67, 235422 (2003).

Bukhtiyarov, V. I. et al. Combined in situ XPS and PTRMS study of ethylene epoxidation over silver. J. Catal. 238, 260–269 (2006).

Watanabe, K., Menzel, D., Nilius, N. & Freund, H. J. Photochemistry on metal nanoparticles. Chem. Rev. 106, 4301–4320 (2006).

Herrmann, J. M. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today 53, 115–129 (1999).

Zhang, Z. & Yates, J. T. Direct observation on surface-mediated electron–hole pair recombination in TiO2(110). J. Phys. Chem. C 114, 3098–3101 (2010).

Stegelmann, C., Schiødt, N. C., Campbell, C. T. & Stolze, P. Microkinetic modeling of ethylene oxidation over silver. J. Catal. 221, 630–649 (2004).

Linic, S. & Barteau, M. A. Construction of a reaction coordinate and a microkinetic model for ethylene epoxidation on silver from DFT calculations and surface science experiments. J. Catal. 214, 200–212 (2003).

Bonn, M. et al. Phonon- versus electron-mediated desorption and oxidation of CO on Ru(0001). Science 285, 1042–1045 (1999).

Funk, S. et al. Desorption of CO from Ru(001) induced by near-infrared femtosecond laser pulses. J. Chem. Phys. 112, 9888–9897 (2000).

Denzler, D. N., Frischkorn, C., Hess, C., Wolf, M. & Ertl, G. Electronic excitation and dynamic promotion of a surface reaction. Phys. Rev. Lett. 91, 226102 (2003).

Gavnholt, J., Olsen, T., Engelund, M. & Shiøtz, J. Delta self-consistent field method to obtain potential energy surfaces of excited molecules on surfaces. Phys. Rev. B 78, 075441 (2008).

Olsen, T., Gavnholt, J. & Schiøtz, J. Hot-electron-mediated desorption rates calculated from excited-state potential energy surfaces. Phys. Rev. B 79, 035403 (2009).

Misewich, J. A., Heinz, T. F. & Newns, D. M. Desorption induced by multiple electronic transitions. Phys. Rev. Lett. 68, 3737–3740 (1992).

Bartels, L. et al. Dynamics of electron-induced manipulation of individual CO molecules on Cu(111). Phys. Rev. Lett. 80, 2004–2007 (1998).

Beckerle J. D. et al. Ultrafast infrared response of adsorbates on metal surfaces: vibrational lifetime of CO/Pt(111). Phys. Rev. Lett. 64, 2090–2093 (1990).

Langhammer, C., Yuan, Z., Zoric, I. & Kasemo, B. Plasmonic properties of supported Pt and Pd nanostructures. Nano Lett. 6, 833–838 (2006).

Langhammer, C., Kasemo, B. & Zoric, I. Absorption and scattering of light by Pt, Pd, Ag and Au nanodisks: absolute cross sections and branching ratios. J. Chem. Phys. 126, 194702 (2007).

Im, S. H., Lee, Y. T., Wiley, B. & Xia, Y. Large-scale synthesis of silver nanocubes: the role of HCl in promoting cube perfection and monodispersity. Angew. Chem. Int. Ed. 44, 2154–2157 (2005).

Mortensen, J. J., Hansen, L. B. & Jacobsen, K. W. Real space grid implementation of the projector augmented wave method. Phys. Rev. B 71, 035109 (2005).