Visible Light Responsive DNA Thermotropic Liquid Crystals Based on a Photothermal Effect of Gold Nanoparticles

Journal of Analysis and Testing - Tập 5 - Trang 181-187 - 2021
Lei Zhang1, Yang Qu1, Yun Liu2, Yawen Deng1, Jingjing Gu1, Zhongtao Wu1, Jiehua Lin1, Xiliang Luo1
1Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, China
2Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China

Tóm tắt

Solvent free DNA–surfactant melts are receiving continuous attractions in recent years. Their physical properties could be regulated via changing the alkyl chain length of surfactants. As an ideal external stimulus, light has been used in the regulation of mechanical properties of DNA thermotropic liquid crystal (TLC) containing an azobenzene motif, while in this case, the UV light is the only effective excitation source. However, in comparison with visible light, UV light causes damage to DNA and has low tissue-penetration efficiency problem. In this work, a new type of DNA–didodecyldimethylammonium bromide (DNA–DDAB) TLCs fabricating with gold nanoparticles (AuNPs) was demonstrated. The visible light-induced photothermal effect of AuNPs could change the mechanical properties of AuNPs/DNA–DDAB TLCs, as shown by clearly boundary motion activity and viscoelasticity change. Furthermore, the ratio of AuNPs and charge stoichiometry of DNA:DDAB also affected photocurrent generation property of these DNA melts. The development of this visible light responsive DNA melt might facilitate the related studies in biomedicine and biomaterials.

Tài liệu tham khảo

Liu K, Zheng L, Ma C, Göstl R, Herrmann A. DNA–surfactant complexes: self-assembly properties and applications. Chem Soc Rev. 2017;46(16):5147–72. https://doi.org/10.1039/C7CS00165G. Liu K, Ma C, Göstl R, Zhang L, Herrmann A. Liquefaction of biopolymers: solvent-free liquids and liquid crystals from nucleic acids and proteins. Acc Chem Res. 2017;50(5):1212–21. https://doi.org/10.1021/acs.accounts.7b00030. Leone AM, Weatherly SC, Williams ME, Thorp HH, Murray RW. An ionic liquid form of DNA: redox-active molten salts of nucleic acids. J Am Chem Soc. 2001;123(2):218–22. https://doi.org/10.1021/ja003332c. Bourlinos AB, Ray Chowdhury S, Herrera R, Jiang DD, Zhang Q, Archer LA, et al. Functionalized nanostructures with liquid-like behavior: expanding the gallery of available nanostructures. Adv Funct Mater. 2005;15(8):1285–90. https://doi.org/10.1002/adfm.200500076. Tanaka K, Okahata Y. A DNA−lipid complex in organic media and formation of an aligned cast film. J Am Chem Soc. 1996;118(44):10679–83. https://doi.org/10.1021/ja9617855. Okahata Y, Kobayashi T, Tanaka K, Shimomura M. Anisotropic electric conductivity in an aligned DNA cast film. J Am Chem Soc. 1998;120(24):6165–6. https://doi.org/10.1021/ja980165w. Neumann T, Gajria S, Bouxsein NF, Jaeger L, Tirrell M. Structural responses of DNA–DDAB films to varying hydration and temperature. J Am Chem Soc. 2010;132(20):7025–37. https://doi.org/10.1021/ja909514j. Liu K, Varghese J, Gerasimov JY, Polyakov AO, Shuai M, Su J, et al. Controlling the volatility of the written optical state in electrochromic DNA liquid crystals. Nature Commun. 2016;7(1):11476. https://doi.org/10.1038/ncomms11476. Silva RO, Costa BLD, Silva FRD, Silva CND, Paiva MBD, Dourado LFN, et al. Treatment for chemical burning using liquid crystalline nanoparticles as an ophthalmic delivery system for pirfenidone. Int J Pharm. 2019;568:118466. https://doi.org/10.1016/j.ijpharm.2019.118466. Seeman NC. DNA in a material world. Nature. 2003;421(6921):427–31. https://doi.org/10.1038/nature01406. Rothemund PWK. Folding DNA to create nanoscale shapes and patterns. Nature. 2006;440(7082):297–302. https://doi.org/10.1038/nature04586. Nakata M, Zanchetta G, Chapman BD, Jones CD, Cross JO, Pindak R, et al. End-to-end stacking and liquid crystal condensation of 6– to 20–base pair DNA duplexes. Science. 2007;318(5854):1276. https://doi.org/10.1126/science.1143826. He Y, Ye T, Su M, Zhang C, Ribbe AE, Jiang W, et al. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature. 2008;452(7184):198–201. https://doi.org/10.1038/nature06597. Kwak M, Herrmann A. Nucleic acid/organic polymer hybrid materials: synthesis, superstructures, and applications. Angew Chem Int Ed. 2010;49(46):8574–87. https://doi.org/10.1002/anie.200906820. Kwak M, Herrmann A. Nucleic acid amphiphiles: synthesis and self-assembled nanostructures. Chem Soc Rev. 2011;40(12):5745–55. https://doi.org/10.1039/C1CS15138J. Guo W, Lu CH, Qi XJ, Orbach R, Fadeev M, Yang HH, et al. Switchable bifunctional stimuli-triggered poly-N-isopropylacrylamide/DNA hydrogels. Angew Chem Int Ed. 2014;53(38):10134–8. https://doi.org/10.1002/anie.201405692. Pinheiro AV, Han D, Shih WM, Yan H. Challenges and opportunities for structural DNA nanotechnology. Nature Nanotech. 2011;6(12):763–72. https://doi.org/10.1038/nnano.2011.187. Lee JB, Peng S, Yang D, Roh YH, Funabashi H, Park N, et al. A mechanical metamaterial made from a DNA hydrogel. Nature Nanotech. 2012;7(12):816–20. https://doi.org/10.1038/nnano.2012.211. Zhou S, Liang D, Burger C, Yeh F, Chu B. Nanostructures of complexes formed by calf thymus DNA interacting with cationic surfactants. Biomacromol. 2004;5(4):1256–61. https://doi.org/10.1021/bm034524d. Liu K, Chen D, Marcozzi A, Zheng L, Su J, Pesce D, et al. Thermotropic liquid crystals from biomacromolecules. Proc Natl Acad Sci USA. 2014;111(52):18596. https://doi.org/10.1073/pnas.1421257111. Liu K, Shuai M, Chen D, Tuchband M, Gerasimov JY, Su J, et al. Solvent-free liquid crystals and liquids from DNA. Chem Eur J. 2015;21(13):4898–903. https://doi.org/10.1002/chem.201500159. Xu L, Chen M, Hao J. Ferrofluids of thermotropic liquid crystals by DNA–lipid hybrids. J Phys Chem B. 2017;121(2):420–5. https://doi.org/10.1021/acs.jpcb.6b09595. Zhang L, Maity S, Liu K, Liu Q, Göstl R, Portale G, et al. Nematic DNA thermotropic liquid crystals with photoresponsive mechanical properties. Small. 2017;13(34):1701207. https://doi.org/10.1002/smll.201701207. Liu K, Zheng L, Liu Q, de Vries JW, Gerasimov JY, Herrmann A. Nucleic acid chemistry in the organic phase: from functionalized oligonucleotides to DNA side chain polymers. J Am Chem Soc. 2014;136(40):14255–62. https://doi.org/10.1021/ja5080486. Yuan J, Mecerreyes D, Antonietti M. Poly(ionic liquid)s: an update. Prog Polym Sci. 2013;38(7):1009–36. https://doi.org/10.1016/j.progpolymsci.2013.04.002. Wang R, Li J, Chen W, Xu T, Yun S, Xu Z, et al. A Biomimetic mussel-inspired ε-Poly-l-lysine hydrogel with robust tissue-anchor and anti-infection capacity. Adv Funct Mater. 2017;27(8):1604894. https://doi.org/10.1002/adfm.201604894. Benight SJ, Wang C, Tok JBH, Bao Z. Stretchable and self-healing polymers and devices for electronic skin. Prog Polym Sci. 2013;38(12):1961–77. https://doi.org/10.1016/j.progpolymsci.2013.08.001. Min Y, Akbulut M, Kristiansen K, Golan Y, Israelachvili J. The role of interparticle and external forces in nanoparticle assembly. Nat Mater. 2008;7(7):527–38. https://doi.org/10.1038/nmat2206. Perriman AW, Cölfen H, Hughes RW, Barrie CL, Mann S. Solvent-free protein liquids and liquid crystals. Angew Chem Int Ed. 2009;48(34):6242–6. https://doi.org/10.1002/anie.200903100. Wu Z, Zhang L. Photoregulation between small DNAs and reversible photochromic molecules. Biomater Sci. 2019;7(12):4944–62. https://doi.org/10.1039/C9BM01305A. Narayanan DL, Saladi RN, Fox JL. Review: Ultraviolet radiation and skin cancer. Int J Dermatol. 2010;49(9):978–86. https://doi.org/10.1111/j.1365-4632.2010.04474.x. Kim Y, Phillips JA, Liu H, Kang H, Tan W. Using photons to manipulate enzyme inhibition by an azobenzene-modified nucleic acid probe. Proc Natl Acad Sci USA. 2009;106(16):6489. https://doi.org/10.1073/pnas.0812402106. Fomina N, McFearin CL, Sermsakdi M, Morachis JM, Almutairi A. Low power, biologically benign NIR light triggers polymer disassembly. Macromolecules. 2011;44(21):8590–7. https://doi.org/10.1021/ma201850q. Liu X, Wei R, Hoang PT, Wang X, Liu T, Keller P. Reversible and rapid laser actuation of liquid crystalline elastomer micropillars with inclusion of gold nanoparticles. Adv Funct Mater. 2015;25(20):3022–32. https://doi.org/10.1002/adfm.201500443. Sun Y, Evans JS, Lee T, Senyuk B, Keller P, He S, et al. Optical manipulation of shape-morphing elastomeric liquid crystal microparticles doped with gold nanocrystals. Appl Phys Lett. 2012;100(24):241901. https://doi.org/10.1063/1.4729143. Yang H, Liu JJ, Wang ZF, Guo LX, Keller P, Lin BP, et al. Near-infrared-responsive gold nanorod/liquid crystalline elastomer composites prepared by sequential thiol-click chemistry. Chem Commun. 2015;51(60):12126–9. https://doi.org/10.1039/C5CC02599K. Chen L, Dong Y, Tang CY, Zhong L, Law WC, Tsui GCP, et al. Development of direct-laser-printable light-powered nanocomposites. ACS Appl Mater Inter. 2019;11(21):19541–53. https://doi.org/10.1021/acsami.9b05871. del Valle AC, Su CK, Sun YC, Huang YF. NIR-cleavable drug adducts of gold nanostars for overcoming multidrug-resistant tumors. Biomater Sci. 2020. https://doi.org/10.1039/C9BM01813A. Zheng Y, Zhong X, Li Z, Xia Y. Successive, seed-mediated growth for the synthesis of single-crystal gold nanospheres with uniform diameters controlled in the range of 5–150 nm. Part Part Syst Char. 2014;31(2):266–73. https://doi.org/10.1002/ppsc.201300256. Fan G-C, Shi XM, Zhang JR, Zhu JJ. Cathode photoelectrochemical immunosensing platform integrating photocathode with photoanode. Anal Chem. 2016;88:10352–6. https://doi.org/10.1021/acs.analchem. Yata T, Takahashi Y, Tan M, Nakatsuji H, Ohtsuki S, Murakami T, et al. DNA nanotechnology-based composite-type gold nanoparticle-immunostimulatory DNA hydrogel for tumor photothermal immunotherapy. Biomaterials. 2017;146:136–45. https://doi.org/10.1016/j.biomaterials.2017.09.014.