Visible‐Light‐Driven Multicomponent Radical Cascade Versatile Alkylation of Quinoxalinones Enabled by Electron Donor Acceptor Complex in Water

Bin Sun1,2, Xiao‐Li Tang1, Xiaohui Zhuang1, Lan Ling1, Panyi Huang1, Jiayang Wang3, Can Jin1,2
1College of Pharmaceutical Sciences, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
2Key Laboraton Pharmaceutical Engineering of Zhejiang Province, Hangzhou, 310014, People's Republic of China
3School of Life Sciences, Huzhou University, Huzhou, 313002, People's Republic of China

Tóm tắt

AbstractAn operationally simple aqueous phase three‐component photochemical strategy for the alkylation of quinoxalin‐2(1H)‐ones with diethyl α‐bromomalonate and unactivated alkenes in the absence of both photoredox catalysts and additive has been developed. This reaction is driven by the photochemical activity of electron donor‐acceptor (EDA) complexes formed by quinoxalin‐2(1H)‐ones and diethyl α‐bromomalonate. Irradiation with visible light triggered single‐electron transfer (SET) from the quinoxalin‐2(1H)‐ones to the diethyl α‐bromomalonate, inducing the formation of the corresponding alkyl radical and the subsequent radical tandem reaction. It provides an efficient way to construct alkylated quinoxalinones from simple small molecules.magnified image

Tài liệu tham khảo

  10.1016/j.bioorg.2021.104807 10.1016/j.bmc.2017.06.037 10.1016/j.bioorg.2014.05.010 10.2147/DDDT.S110125 10.1080/10426500601142114 10.1016/S0014-827X(01)01161-2 10.1021/jm3000906 10.1007/s10637-009-9384-8 10.1007/s00044-010-9394-2 10.1016/j.bioorg.2022.105696   10.1021/jm061117m 10.1016/j.bmc.2016.03.043 10.1016/S0960-894X(00)00321-8 10.1021/jm200394x 10.1007/s11030-015-9610-6   10.1039/C2SC00767C 10.1016/S0960-894X(03)00443-8 O. I. El-Sabbagh M. E. El-Sadek S. M. Lashine S. H. Yassin S. M. El-Nabtity Med. Chem. Res.2009 18 9 782–797; 10.1016/j.bmcl.2007.10.002 10.4155/fmc-2019-0194 10.1021/jm00381a016 10.2174/138955706778742713 10.1016/j.ejmech.2021.114085   10.1002/asia.202000916 10.1039/C8QO00731D 10.1039/D1OB00769F 10.1039/D1GC03992J 10.3389/fchem.2021.672051 10.1002/ajoc.202000523 10.3389/fchem.2020.00582 10.1007/s11030-018-9855-y 10.1021/acs.joc.9b01181 10.1039/C8OB03061H 10.1002/ejoc.201800697 10.1080/00397911.2020.1765257 10.1002/ejoc.202000746 10.1021/acs.orglett.7b03984 10.1021/ol4028946 10.1039/D1OB00665G 10.1039/D0CC05623E 10.1039/D0GC02168G 10.1002/adsc.202000116   10.3389/fchem.2020.00606 10.1021/acs.orglett.0c03918 10.1016/j.tet.2020.131199 10.1021/acs.joc.9b03505   10.1002/anie.200904056 10.1002/ange.200904056 10.1039/B913880N 10.1002/anie.201200223 10.1002/ange.201200223 10.1021/cr300503r 10.1002/anie.201709766 10.1002/ange.201709766 10.1002/asia.201900904 10.1021/acssuschemeng.8b04652 10.1039/C9OB01169B 10.1021/acs.joc.1c02125 10.1021/acs.joc.1c01325   10.1021/acs.orglett.8b03849 10.1039/D1QO01170G 10.1016/j.cclet.2020.11.034 10.1016/j.cclet.2021.08.036 10.1039/D1QO00816A 10.1021/acs.orglett.2c01358 10.1039/D2NJ04430G   10.1246/cl.130547 Arceo E., 2013, Chem., 5, 750 10.1002/anie.201409529 10.1002/ange.201409529 10.1002/ange.201402008 10.1002/anie.201402008 10.1039/C5CC08817H 10.1002/anie.201707171 10.1002/ange.201707171 10.1002/adsc.201800692 10.1002/anie.201814452 10.1002/ange.201814452 10.1021/acs.orglett.9b01175 10.1021/acs.orglett.9b02921 10.1039/C8SC05170D 10.1021/jacs.0c01416 10.1039/C9GC04191E 10.1016/j.tetlet.2019.151506 10.1021/acs.orglett.1c00268