Visfatin, an Adipocytokine with Proinflammatory and Immunomodulating Properties

Journal of Immunology - Tập 178 Số 3 - Trang 1748-1758 - 2007
Alexander R. Moschen1, Arthur Kaser2, Barbara Enrich2, Birgit Mosheimer3, Milan Theurl3, Harald Niederegger4, Herbert Tilg2
1Department of Medicine, Christian Doppler Research Laboratory for Gut Inflammation and Clinical Division of Gastroenterology and Hepatology, Innsbruck Medical University, Innsbruck, Austria.
2*Department of Medicine, Christian Doppler Research Laboratory for Gut Inflammation and Clinical Division of Gastroenterology and Hepatology,
3†Department of Medicine, Clinical Division of General Internal Medicine, and
4‡Innsbruck Biocentre, Division of Experimental Pathophysiology and Immunology, Innsbruck Medical University, Innsbruck, Austria

Tóm tắt

Abstract Adipocytokines are mainly adipocyte-derived cytokines regulating metabolism and as such are key regulators of insulin resistance. Some adipocytokines such as adiponectin and leptin affect immune and inflammatory functions. Visfatin (pre-B cell colony-enhancing factor) has recently been identified as a new adipocytokine affecting insulin resistance by binding to the insulin receptor. In this study, we show that recombinant visfatin activates human leukocytes and induces cytokine production. In CD14+ monocytes, visfatin induces the production of IL-1β, TNF-α, and especially IL-6. Moreover, it increases the surface expression of costimulatory molecules CD54, CD40, and CD80. Visfatin-stimulated monocytes show augmented FITC-dextran uptake and an enhanced capacity to induce alloproliferative responses in human lymphocytes. Visfatin-induced effects involve p38 as well as MEK1 pathways as determined by inhibition with MAPK inhibitors and we observed activation of NF-κB. In vivo, visfatin induces circulating IL-6 in BALB/c mice. In patients with inflammatory bowel disease, plasma levels of visfatin are elevated and its mRNA expression is significantly increased in colonic tissue of Crohn’s and ulcerative colitis patients compared with healthy controls. Macrophages, dendritic cells, and colonic epithelial cells might be additional sources of visfatin as determined by confocal microscopy. Visfatin can be considered a new proinflammatory adipocytokine.

Từ khóa


Tài liệu tham khảo

Hotamisligil, G. S., N. S. Shargill, B. M. Spiegelman. 1993. Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance. Science 259: 87-91.

Fain, J. N., A. K. Madan, M. L. Hiler, P. Cheema, S. W. Bahouth. 2004. Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology 145: 2273-2282.

Shimomura, I., T. Funahashi, M. Takahashi, K. Maeda, K. Kotani, T. Nakamura, S. Yamashita, M. Miura, Y. Fukuda, K. Takemura, et al 1996. Enhanced expression of PAI-1 in visceral fat: possible contributor to vascular disease in obesity. Nat. Med. 2: 800-803.

Friedman, J. M., J. L. Halaas. 1998. Leptin and the regulation of body weight in mammals. Nature 395: 763-770.

Maeda, K., K. Okubo, I. Shimomura, T. Funahashi, Y. Matsuzawa, K. Matsubara. 1996. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1). Biochem. Biophys. Res. Commun. 221: 286-289.

Scherer, P. E., S. Williams, M. Fogliano, G. Baldini, H. F. Lodish. 1995. A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem. 270: 26746-26749.

Steppan, C. M., S. T. Bailey, S. Bhat, E. J. Brown, R. R. Banerjee, C. M. Wright, H. R. Patel, R. S. Ahima, M. A. Lazar. 2001. The hormone resistin links obesity to diabetes. Nature 409: 307-312.

Fukuhara, A., M. Matsuda, M. Nishizawa, K. Segawa, M. Tanaka, K. Kishimoto, Y. Matsuki, M. Murakami, T. Ichisaka, H. Murakami, et al 2005. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science 307: 426-430.

Sethi, J. K., A. Vidal-Puig. 2005. Visfatin: the missing link between intra-abdominal obesity and diabetes?. Trends Mol. Med. 11: 344-347.

Chen, M. P., F. M. Chung, D. M. Chang, J. C. Tsai, H. F. Huang, S. J. Shin, Y. J. Lee. 2006. Elevated plasma level of visfatin/pre-B cell colony-enhancing factor in patients with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 91: 295-299.

Samal, B., Y. Sun, G. Stearns, C. Xie, S. Suggs, I. McNiece. 1994. Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor. Mol. Cell. Biol. 14: 1431-1437.

Martin, P. R., R. J. Shea, M. H. Mulks. 2001. Identification of a plasmid-encoded gene from Haemophilus ducreyi which confers NAD independence. J. Bacteriol. 183: 1168-1174.

Muller, W. E., S. Perovic, J. Wilkesman, M. Kruse, I. M. Muller, R. Batel. 1999. Increased gene expression of a cytokine-related molecule and profilin after activation of Suberites domuncula cells with xenogeneic sponge molecule(s). DNA Cell Biol. 18: 885-893.

Fujiki, K., D. H. Shin, M. Nakao, T. Yano. 2000. Molecular cloning and expression analysis of the putative carp (Cyprinus carpio) pre-B cell enhancing factor. Fish Shellfish Immunol. 10: 383-385.

Wang, T., X. Zhang, P. Bheda, J. R. Revollo, S. Imai, C. Wolberger. 2006. Structure of Nampt/PBEF/visfatin, a mammalian NAD+ biosynthetic enzyme. Nat. Struct. Mol. Biol. 13: 661-662.

Rongvaux, A., R. J. Shea, M. H. Mulks, D. Gigot, J. Urbain, O. Leo, F. Andris. 2002. Pre-B-cell colony-enhancing factor, whose expression is up-regulated in activated lymphocytes, is a nicotinamide phosphoribosyltransferase, a cytosolic enzyme involved in NAD biosynthesis. Eur. J. Immunol. 32: 3225-3234.

Kitani, T., S. Okuno, H. Fujisawa. 2003. Growth phase-dependent changes in the subcellular localization of pre-B-cell colony-enhancing factor. FEBS Lett. 544: 74-78.

Wellen, K. E., G. S. Hotamisligil. 2005. Inflammation, stress, and diabetes. J. Clin. Invest. 115: 1111-1119.

Hotamisligil, G. S., P. Arner, J. F. Caro, R. L. Atkinson, B. M. Spiegelman. 1995. Increased adipose tissue expression of tumor necrosis factor-α in human obesity and insulin resistance. J. Clin. Invest. 95: 2409-2415.

Fried, S. K., D. A. Bunkin, A. S. Greenberg. 1998. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. J. Clin. Endocrinol. Metab. 83: 847-850.

Maeda, N., I. Shimomura, K. Kishida, H. Nishizawa, M. Matsuda, H. Nagaretani, N. Furuyama, H. Kondo, M. Takahashi, Y. Arita, et al 2002. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat. Med. 8: 731-737.

Wolf, A. M., D. Wolf, H. Rumpold, B. Enrich, H. Tilg. 2004. Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1RA in human leukocytes. Biochem. Biophys. Res. Commun. 323: 630-635.

La Cava, A., G. Matarese. 2004. The weight of leptin in immunity. Nat. Rev. Immunol. 4: 371-379.

Boyum, A.. 1968. Separation of leukocytes from blood and bone marrow: introduction. Scand. J. Clin. Lab. Invest. 97: (Suppl.):7

Renard, P., I. Ernest, A. Houbion, M. Art, H. Le Calvez, M. Raes, J. Remacle. 2001. Development of a sensitive multi-well colorimetric assay for active NFκB. Nucleic Acids Res. 29: E21

Mosheimer, B. A., N. C. Kaneider, C. Feistritzer, D. H. Sturn, C. J. Wiedermann. 2004. Expression and function of RANK in human monocyte chemotaxis. Arthritis Rheum. 50: 2309-2316.

Wabitsch, M., R. E. Brenner, I. Melzner, M. Braun, P. Moller, E. Heinze, K. M. Debatin, H. Hauner. 2001. Characterization of a human preadipocyte cell strain with high capacity for adipose differentiation. Int. J. Obes. Relat. Metab. Disord. 25: 8-15.

Hibi, M., A. Lin, T. Smeal, A. Minden, M. Karin. 1993. Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev. 7: 2135-2148.

Gupta, S., D. Campbell, B. Derijard, R. J. Davis. 1995. Transcription factor ATF2 regulation by the JNK signal transduction pathway. Science 267: 389-393.

Amaravadi, R., C. B. Thompson. 2005. The survival kinases Akt and Pim as potential pharmacological targets. J. Clin. Invest. 115: 2618-2624.

Jia, S. H., Y. Li, J. Parodo, A. Kapus, L. Fan, O. D. Rotstein, J. C. Marshall. 2004. Pre-B cell colony-enhancing factor inhibits neutrophil apoptosis in experimental inflammation and clinical sepsis. J. Clin. Invest. 113: 1318-1327.

Ognjanovic, S., T. L. Ku, G. D. Bryant-Greenwood. 2005. Pre-B-cell colony-enhancing factor is a secreted cytokine-like protein from the human amniotic epithelium. Am. J. Obstet. Gynecol. 193: 273-282.

Li, Q., I. M. Verma. 2002. NF-κB regulation in the immune system. Nat. Rev. Immunol. 2: 725-734.

Atreya, R., J. Mudter, S. Finotto, J. Mullberg, T. Jostock, S. Wirtz, M. Schutz, B. Bartsch, M. Holtmann, C. Becker, et al 2000. Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in Crohn disease and experimental colitis in vivo. Nat. Med. 6: 583-588.

Best, W. R., J. M. Becktel, J. W. Singleton, F. Kern, Jr. 1976. Development of a Crohn’s disease activity index: National Cooperative Crohn’s Disease Study. Gastroenterology 70: 439-444.

Rachmilewitz, D.. 1989. Coated mesalazine (5-aminosalicylic acid) versus sulphasalazine in the treatment of active ulcerative colitis: a randomised trial. Br. Med. J. 298: 82-86.

Dinarello, C. A.. 1996. Biologic basis for interleukin-1 in disease. Blood 87: 2095-2147.

Peters, M., S. Jacobs, M. Ehlers, P. Vollmer, J. Mullberg, E. Wolf, G. Brem, K. H. Meyer zum Buschenfelde, S. Rose-John. 1996. The function of the soluble interleukin 6 (IL-6) receptor in vivo: sensitization of human soluble IL-6 receptor transgenic mice towards IL-6 and prolongation of the plasma half-life of IL-6. J. Exp. Med. 183: 1399-1406.

Rothe, J., W. Lesslauer, H. Lotscher, Y. Lang, P. Koebel, F. Kontgen, A. Althage, R. Zinkernagel, M. Steinmetz, H. Bluethmann. 1993. Mice lacking the tumour necrosis factor receptor 1 are resistant to TNF-mediated toxicity but highly susceptible to infection by Listeria monocytogenes. Nature 364: 798-802.

Lenschow, D. J., T. L. Walunas, J. A. Bluestone. 1996. CD28/B7 system of T cell costimulation. Annu. Rev. Immunol. 14: 233-258.

Miga, A. J., S. R. Masters, B. G. Durell, M. Gonzalez, M. K. Jenkins, C. Maliszewski, H. Kikutani, W. F. Wade, R. J. Noelle. 2001. Dendritic cell longevity and T cell persistence is controlled by CD154-CD40 interactions. Eur. J. Immunol. 31: 959-965.

Lebedeva, T., M. L. Dustin, Y. Sykulev. 2005. ICAM-1 co-stimulates target cells to facilitate antigen presentation. Curr. Opin. Immunol. 17: 251-258.

Esche, C., C. Stellato, L. A. Beck. 2005. Chemokines: key players in innate and adaptive immunity. J. Invest. Dermatol. 125: 615-628.

Kumar, S., J. Boehm, J. C. Lee. 2003. p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat. Rev. Drug Discov. 2: 717-726.

Freeden-Jeffry, U., P. Vieira, L. A. Lucian, T. McNeil, S. E. Burdach, R. Murray. 1995. Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J. Exp. Med. 181: 1519-1526.

Wan, Y. Y., H. Chi, M. Xie, M. D. Schneider, R. A. Flavell. 2006. The kinase TAK1 integrates antigen and cytokine receptor signaling for T cell development, survival and function. Nat. Immunol. 7: 851-858.

Ghosh, S., M. Karin. 2002. Missing pieces in the NF-κB puzzle. Cell 109: (Suppl.):S81-S96.

Karin, M., Y. Ben Neriah. 2000. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol. 18: 621-663.

Stephens, J. M., A. J. Vidal-Puig. 2006. An update on visfatin/pre-B cell colony-enhancing factor, an ubiquitously expressed, illusive cytokine that is regulated in obesity. Curr. Opin. Lipidol. 17: 128-131.

Kishimoto, T., S. Akira, M. Narazaki, T. Taga. 1995. Interleukin-6 family of cytokines and gp130. Blood 86: 1243-1254.

Peters, M., A. M. Muller, S. Rose-John. 1998. Interleukin-6 and soluble interleukin-6 receptor: direct stimulation of gp130 and hematopoiesis. Blood 92: 3495-3504.

Kishimoto, T.. 1989. The biology of interleukin-6. Blood 74: 1-10.

Romano, M., M. Sironi, C. Toniatti, N. Polentarutti, P. Fruscella, P. Ghezzi, R. Faggioni, W. Luini, V. van Hinsbergh, S. Sozzani, et al 1997. Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. Immunity 6: 315-325.

Cressman, D. E., L. E. Greenbaum, R. A. DeAngelis, G. Ciliberto, E. E. Furth, V. Poli, R. Taub. 1996. Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science 274: 1379-1383.

Penkowa, M., M. Giralt, J. Carrasco, H. Hadberg, J. Hidalgo. 2000. Impaired inflammatory response and increased oxidative stress and neurodegeneration after brain injury in interleukin-6-deficient mice. Glia 32: 271-285.

Berndt, J., N. Kloting, S. Kralisch, P. Kovacs, M. Fasshauer, M. R. Schon, M. Stumvoll, M. Bluher. 2005. Plasma visfatin concentrations and fat depot-specific mRNA expression in humans. Diabetes 54: 2911-2916.

Senn, J. J., P. J. Klover, I. A. Nowak, T. A. Zimmers, L. G. Koniaris, R. W. Furlanetto, R. A. Mooney. 2003. Suppressor of cytokine signaling-3 (SOCS-3), a potential mediator of interleukin-6-dependent insulin resistance in hepatocytes. J. Biol. Chem. 278: 13740-13746.

Gross, V., T. Andus, I. Caesar, M. Roth, J. Scholmerich. 1992. Evidence for continuous stimulation of interleukin-6 production in Crohn’s disease. Gastroenterology 102: 514-519.

Otero, M., R. Lago, R. Gomez, F. Lago, C. Dieguez, J. J. Gomez-Reino, O. Gualillo. 2006. Changes in plasma levels of fat-derived hormones adiponectin, leptin, resistin and visfatin in patients with rheumatoid arthritis. Ann. Rheum. Dis. 65: 1198-1201.

Ye, S. Q., B. A. Simon, J. P. Maloney, A. Zambelli-Weiner, L. Gao, A. Grant, R. B. Easley, B. J. McVerry, R. M. Tuder, T. Standiford, et al 2005. Pre-B-cell colony-enhancing factor as a potential novel biomarker in acute lung injury. Am. J. Respir. Crit. Care Med. 171: 361-370.

Koczan, D., R. Guthke, H. J. Thiesen, S. M. Ibrahim, G. Kundt, H. Krentz, G. Gross, M. Kunz. 2005. Gene expression profiling of peripheral blood mononuclear leukocytes from psoriasis patients identifies new immune regulatory molecules. Eur. J. Dermatol. 15: 251-257.