Viscosity of high-entropy melts in Cu-Sn-Pb-Bi-Ga, G-Sn, Cu-Pb, Cu-Ga, and Cu-Bi equiatomic compositions

Allerton Press - Tập 56 - Trang 246-250 - 2015
O. A. Chikova1, V. S. Tsepelev1, V. V. V’yukhin1
1Ural Federal University, Yekaterinburg, Russia

Tóm tắt

Temperature dependences of kinematic viscosity of high-entropy melts (HEM) of the composition, at %, Cu-20Sn-20Pb-20Bi-20Ga, Cu-50Sn, Cu-50Pb, Cu-50Ga, and Cu-50Bi are investigated in a temperature range from 1550 to 1300°C. It is shown that melt overheating above a definite temperature (t hom) leads to the appearance of viscosity hysteresis, which indicates a variation in the structural state of the HEM. The values of t hom for all studied samples are in limits of 925–1185°C. It is found that heating the HEM to definite temperatures (t*) leads to a variation in the activation energy of viscous flow (E) and entropy multiplier (A) in the Arrhenius equation: ν = Aexp[E/(RT)]. Entropy of viscous flow (ΔS #) for studied HEMs is investigated in terms of the Airing theory. It is revealed that the magnitude of ΔS# for a five-component Cu-Sn-Pb-Bi-Ga melt in a cooling mode is smaller than during heating by a factor of 2.6. The rheological characteristics of HEMs allow us to consider these melts promising functional materials: solders, heat carriers, and electric contacts.

Tài liệu tham khảo

Chung-Chin Tung, Jien-Wei Yeh, Tao-Tsung Shun, et al., Mater. Lett., 2007, vol. 61. pp. 1–5. Wang, X.F., Zhang, Y., Qiao, Y., and Chen, G.L., Intermetallics, 2007, vol. 15, pp. 357–362. Chung-Jin Tong, Yu-Liang Chen, Swe-Kai Chen, et al., Metal. Mater. Trans. A, 2005, vol. 36A, no. 4, pp. 881–893. Firstov, S.A., Gorban’, V.F., Krapivka, N.A., and Pechkovskii, E.P., Kompoz. Nanomat., 2011, no. 2, pp. 5–20. Sobol’, O.V., Andreev, A.A., Gorban’, V.F., et al., Pis’ma Zh. Tekh. Fiz., 2012, vol. 38, no. 13, pp. 41–48. Ostrovskii, O.I., Grigoryan, V.A., and Vishkarev, A.F., Svoistva metallicheskikh rasplavov (Properties of Metallic Melts), Moscow: Metallurgiya, 1988. Glazov, V.M. and Aivazov, A.A., Entropiya plavleniya metallov i poluprovodnikov (Entropy of Melting of Metals and Semiconductors), Moscow: Metallurgiya, 1980. Ziner, K., in Ustoichivost’ faz v metallakh i splavakh (Phase Stability in Metals and Alloys), Moscow: Mir, 1970, pp. 96–110. Baum, B.A., Khasin, G.A., Tyagunov, G.V., et al., Zhidkaya stal’ (Liquid Steel), Moscow: Metallurgiya, 1984. Baum, B.A., Metallicheskie zhidkosti (Metallic Liquids), Moscow: Nauka, 1979. Korzhavina, O.A., Chikova, O.A., et. al., Rasplavy, 1991, no. 1, pp. 10–17. Popel’, P.S., Chikova, O.A., Brodova, I.G., and Polents, I.V., Fiz. Met. Metalloved., 1992, no. 9, pp. 111–115. Tyagunov, G.V., Tsepelev, V.S., Kushnir, M.N., and Yakovlev, G.N., Zavod. Lab., 1980, no. 10, pp. 919–920. Povodator, A.M., Konashkov, V.V., V’yukhin, V.V., and Tsepelev, V.S., RF Patent 2386948, Byull. Izobret., 2010, no. 11. Povodator, A.M., Konashkov, V.V., V’yukhin, V.V., and Tsepelev, V.S., RF Patent 104721, Byull. Izobret., 2011, no. 14A. Brodova, I.G., Popel’, P.S., Barbin, N.M., and Vatolin, N.A., Iskhodnye rasplavy kak osnova formirovaniya struktury i svoistv alyuminievykh splavov (Initial Melts as a Basis for the Formation of the Structure and Properties of Aluminum Alloys), Yekaterinburg: Ural Branch, Russ. Acad. Sci., 2005.