Hành vi viscoPlastic của hợp kim nhôm AA7075 ở tốc độ biến dạng cao

Springer Science and Business Media LLC - Tập 35 - Trang 5405-5413 - 2021
Keguo Zhang1, Yang Cao1, Jianlin An1, Keyi Wang1
1School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai, China

Tóm tắt

Ứng suất chảy tăng lên khi tốc độ biến dạng tăng. Hiện tượng này là hiệu ứng tốc độ biến dạng của sự biến dạng dẻo. Thí nghiệm Hopkinson (102–104 s−1) và thí nghiệm cắt kim loại (> 104 s−1) của hợp kim nhôm AA7075 được thực hiện ở nhiệt độ phòng (20 °C) nhằm làm rõ hơn về hiệu ứng tốc độ biến dạng của các vật liệu trong một khoảng tốc độ biến dạng rộng hơn. Kết quả cho thấy khi tốc độ biến dạng nằm trong khoảng 1×104–1.3×104 s−1, cơ chế điều khiển biến dạng dẻo của hợp kim nhôm AA7075 bắt đầu chuyển từ cơ chế kích hoạt nhiệt sang cơ chế giảm chấn dislocation. Hành vi nhớt của sự biến dạng vật liệu trong quá trình cắt thể hiện như sự tương quan tuyến tính giữa tốc độ biến dạng và ứng suất. Phân tích mức độ biến dạng của phoi cắt cho thấy thời gian không đủ để biến dạng và làm mềm là những lý do chính cho hiệu ứng tốc độ biến dạng.

Từ khóa

#AA7075 #hợp kim nhôm #tốc độ biến dạng #ứng suất chảy #hành vi viscoPlastic

Tài liệu tham khảo

R. Liu, M. Salahshoor and S. N. Melkote, A unified material model including dislocation drag and its application to simulation of orthogonal cutting of OFHC Copper, Journal of Materials Processing Technology, 216 (2015) 328–338. P. S. Follansbee and J. Weertman, On the question of flow stress at high strain rates controlled by dislocation viscous flow, Mechanics of Materials, 1 (4) (1982) 345–350. V. Kannan, X. Ma, N. M. Krywopusk, L. J. Kecskes, T. P. Weihs and K. T. Ramesh, The effect of strain rate on the mechanisms of plastic flow and failure of an ECAE AZ31B magnesium alloy, Journal of Materials Science, 54 (20) (2019) 13394–13419. B. Mishra, A. Mukhopadhyay and K. Kumar, Effect of test temperature on flow behavior and strain hardening of magnesium under high strain rate deformation conditions, Materials Science and Engineering A, 770 (2020) 138546. J. W. Swegle and D. E. Grady, Shock viscosity and the prediction of shock wave rise times, Journal of Applied Physics, 58 (2) (1995) 692–701. S. S. Jafari, G. H. Majzoobi and E. Khademi, Development of a new technique for measuring damage accumulation at high strain rates, Engineering Fracture Mechanics, 209 (2019) 162–172. F. Liu and Q. M. Li, Strain-rate effect on the compressive strength of brittle materials and its implementation into material strength model, International Journal of Impact Engineering, 130 (2019) 113–123. J. Wang, S. Dong and X. Yu, Mechanical properties of graphene-reinforced reactive powder concrete at different strain rates, Journal of Materials Science, 55 (8) (2020) 3369–3387. C. Wu, B. Li and Y. Liu, Strain rate-sensitive analysis for grinding damage of brittle materials, Int. J. Adv. Manuf. Technol., 89 (2017) 2221–2229. L. L. Wang, Dynamic mechanical properties of materials at high strain rates, Mechanics in Engineering, 1 (1982) 9–19 (in Chinese). A. A. Tiamiyu, J. A. Szpunar and A. G. Odeshi, Strain rate sensitivity and activation volume of AISI 321 stainless steel under dynamic impact loading: grain size effect, Materials Characterization, 154 (2019) 7–19. G. I. Kanel, Unusual behavior of usual materials in shock waves, Journal of Physics: Conference Series, 500 (2014) 012001. J. T. Benzing, W. A. Poling, D. T. Pierce, J. Bentley, K. O. Findley, D. Raabe and J. E. Wittig, Effects of strain rate on mechanical properties and deformation behavior of an austenitic Fe-25Mn-3Al-3Si TWIP-TRIP steel, Materials Science and Engineering A, 711 (2018) 78–92. W. S. Lee, W. C. Sue, C. F. Lin and C. J. Wu, The strain rate and temperature dependence of the dynamic impact properties of 7075 aluminum alloy, Journal of Materials Processing Technology, 100 (1a3) (2000). W. S. Lee, W. C. Sue, C. F. Lin and C. J. Wu, Effect of aging on high strain rate and high temperature properties of 7075 aluminium alloy, Materials Science and Technology: MST: A publication of the Institute of Metals, 15 (12) (1999). J. Van Slycken, P. Verleysen, J. Degrieck, L. Samek and B. C. De Cooman, High-strain-rate behavior of low-alloy multiphase aluminum- and silicon-based transformation-induced plasticity steels, Metallurgical and Materials Transactions A, 37 (5) (2006) 1527–1539. J. Choung, W. Nam and J. Y. Lee, Dynamic hardening behaviors of various marine structural steels considering dependencies on strain rate and temperature, Marine Structures, 32 (2013) 49–67. J. Hemant, D. P. Mondal, G. Gaurav and K. Rajeev, Effect of compressive strain rate on the deformation behaviour of austenitic stainless steel foam produced by space holder technique, Materials Chemistry and Physics, 259 (2021) 124010. P. Lu, T. W. Zhang, D. Zhao, S. G. Ma, Q. Li, T. Wang and Z. H. Wang, Effects of stress states and strain rates on mechanical behavior and texture evolution of the CoCrFeNi high-entropy alloy: experiment and simulation, Journal of Alloys and Compounds, 851 (2021) 156779. W. Wang, R. Yan and L. Xu, Effect of tensile-strain rate on mechanical properties of high-strength Q460 steel at elevated temperatures, Journal of Materials in Civil Engineering, 32 (2020) 04020188. W. Mocko, J. A. Rodriguez-Martinez, Z. L. Kowalewski and A. Rusinek, Compressive viscoplastic response of 6082-T6 and 7075-T6 aluminium alloys under wide range of strain rate at room temperature: experiments and modelling, Strain, 48 (6) (2012). A. S. Khan, J. Liu, J. W. Yoon and R. Nambori, Strain rate effect of high purity aluminum single crystals: experiments and simulations, International Journal of Plasticity (2015) 67. J. D. Campbell and W. G. Ferguson, The temperature and strain-rate dependence of the shear strength of mild steel, Philosophical Magazine, 81 (1970) 63–82. V. S. Lindholm, Some experiments with the split Hopkinson pressure bar, Journal of the Mechanics and Physics of Solids, 12 (1964) 317–335. M. A. Meyers and K. K. Chawla, Mechanical Behavior of Materials, New York, Cambridge University Press (2009) 55–70. E. El-Magd and M. Abouridouane, Influence of strain rate and temperature on the flow behavior of magnesium alloy AZ80, Materials Research and Advanced Techniques, 92 (2001) 1231–1235. H. Xu, B. Zhao, X. Lu, Z. Liu, T. Li, N. Zhong and X. Yin, A modified Johnson-Cook constitutive model for the compressive flow behaviors of the SnSbCu alloy at high strain rates, Journal of Materials Engineering and Performance, 28 (2019) 6958–6968. P. L. B. Oxley, Mechanics of Machining: An Analytical Approach to Assessing Machinability, Chichister, Ellis Horwood (1989) 240–242. M. Tiryakioglu, On the relationship between Vickers hardness and yield stress in Al-Zn-Mg-Cu Alloys, Materials Science and Engineering A, 633 (2015) 17–19. R. Clifton, Dynamic plasticity, Journal of Applied Mechanics, 50 (1983) 941–952. E. El-Magd and M. Abouridouane, Characterization, modelling and simulation of deformation and fracture behaviour of the light-weight wrought alloys under high strain rate loading, International Journal of Impact Engineering, 32 (2006) 741–758.