Viscoelastic gels of guar and xanthan gum mixtures provide long-term stabilization of iron micro- and nanoparticles

Dingqi Xue1, Rajandrea Sethi2
1Dipartimento Scienza Applicata e Tecnologia—DISAT and Dipartimento di Ingegneria dell’Ambiente, del Territorio e delle Infrastrutture—DIATI, Politecnico di Torino, Turin, Italy
2Dipartimento di Ingegneria dell’Ambiente, del Territorio e delle Infrastrutture—DIATI, Politecnico di Torino, Turin, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Amundarain J, Castro L, Rojas M, Siquier S, Ramírez N, Müller A, Sáez A (2009) Solutions of xanthan gum/guar gum mixtures: shear rheology, porous media flow, and solids transport in annular flow. Rheol Acta 48(5):491–498

Born K, Langendorff V, Boulenguer P (2005) Xanthan. In: Biopolymers Online. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Cantrell KJ, Kaplan DI, Wietsma TW (1995) Zero-valent iron for the in situ remediation of selected metals in groundwater. J Hazard Mater 42(2):201–212

Casas JA, Mohedano AF, García-Ochoa F (2000) Viscosity of guar gum and xanthan/guar gum mixture solutions. J Sci Food Agric 80(12):1722–1727

Choppe E, Puaud F, Nicolai T, Benyahia L (2010) Rheology of xanthan solutions as a function of temperature, concentration and ionic strength. Carbohydr Polym 82(4):1228–1235

Comba S, Sethi R (2009) Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum. Water Res 43(15):3717–3726

Comba S, Dalmazzo D, Santagata E, Sethi R (2011) Rheological characterization of xanthan suspensions of nanoscale iron for injection in porous media. J Hazard Mater 185(2–3):598–605

Dalla Vecchia E, Coisson M, Appino C, Vinai F, Sethi R (2009a) Magnetic characterization and interaction modeling of zerovalent iron nanoparticles for the remediation of contaminated aquifers. J Nanosci Nanotechnol 9(5):3210–3218

Dalla Vecchia E, Luna M, Sethi R (2009b) Transport in porous media of highly concentrated iron micro- and nanoparticles in the presence of xanthan gum. Environ Sci Technol 43(23):8942–8947

Dea ICM (1989) Industrial polysaccharides. Pure Appl Chem 61(7):1315–1322

Dea ICM, Morris ER (1977) Synergistic xanthan gels. In: Extracellular microbial polysaccharides, ACS symposium series, vol 45. American chemical society, Washington, DC, pp 174–182

Dea ICM, Morris ER, Rees DA, Welsh EJ, Barnes HA, Price J (1977) Associations of like and unlike polysaccharides: mechanism and specificity in galactomannans, interacting bacterial polysaccharides, and related systems. Carbohydr Res 57:249–272

Di Molfetta A, Sethi R (2006) Clamshell excavation of a permeable reactive barrier. Environ Geol 50(3):361–369

Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca

Freyria FS, Bonelli B, Sethi R, Armandi M, Belluso E, Garrone E (2011) Reactions of acid orange 7 with iron nanoparticles in aqueous solutions. J Phys Chem C 115(49):24143–24152

García-Ochoa F, Santos VE, Casas JA, Gómez E (2000) Xanthan gum: production, recovery, and properties. Biotechnol Adv 18(7):549–579

Huber DL (2005) Synthesis, properties, and applications of iron nanoparticles. Small 1(5):482–501

Hyun K, Kim SH, Ahn KH, Lee SJ (2002) Large amplitude oscillatory shear as a way to classify the complex fluids. J Nonnewton Fluid Mech 107(1–3):51–65

Iijima M, Shinozaki M, Hatakeyama T, Takahashi M, Hatakeyama H (2007) AFM studies on gelation mechanism of xanthan gum hydrogels. Carbohydr Polym 68(4):701–707

Kim D, Quinlan M, Yen TF (2009) Encapsulation of lead from hazardous CRT glass wastes using biopolymer cross-linked concrete systems. Waste Manag (Oxford) 29(1):321–328

Li X, Elliott DW, Zhang W (2006) Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit Rev Solid State Mater Sci 31(4):111–122

Mezger TG (2006) The rheology handbook: for users of rotational and oscillatory rheometers. Vincentz Network, Hannover

Milas M, Rinaudo M (1986) Properties of xanthan gum in aqueous solutions: role of the conformational transition. Carbohydr Res 158:191–204

Norton IT, Goodall DM, Frangou SA, Morris ER, Rees DA (1984) Mechanism and dynamics of conformational ordering in xanthan polysaccharide. J Mol Biol 175(3):371–394

Noubactep C, Caré S, Crane R (2012) Nanoscale metallic iron for environmental remediation: prospects and limitations. Water Air Soil Pollut 223(3):1363–1382

Oostrom M, Wietsma TW, Covert MA, Vermeul VR (2007) Zero-valent iron emplacement in permeable porous media using polymer additions. Ground Water Monit Remediat 27(1):122–130

Pai VB, Khan SA (2002) Gelation and rheology of xanthan/enzyme-modified guar blends. Carbohydr Polym 49(2):207–216

Phenrat T, Saleh N, Sirk K, Kim H-J, Tilton R, Lowry G (2008) Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J Nanopart Res 10(5):795–814

Qiang Y, Antony J, Sharma A, Nutting J, Sikes D, Meyer D (2006) Iron/iron oxide core-shell nanoclusters for biomedical applications. J Nanopart Res 8(3):489–496

Risica D, Barbetta A, Vischetti L, Cametti C, Dentini M (2010) Rheological properties of guar and its methyl, hydroxypropyl and hydroxypropyl-methyl derivatives in semidilute and concentrated aqueous solutions. Polymer 51(9):1972–1982

Rodd AB, Dunstan DE, Boger DV (2000) Characterisation of xanthan gum solutions using dynamic light scattering and rheology. Carbohydr Polym 42(2):159–174

Schramm G, Haake G (1994) A practical approach to rheology and rheometry. Gebrueder Haake, Karlsruhe

Tiraferri A, Sethi R (2009) Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gum. J Nanopart Res 11:635–645

Tiraferri A, Chen KL, Sethi R, Elimelech M (2008) Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. J Colloid Interf Sci 324(1–2):71–79

Tosco T, Marchisio DL, Lince F, Sethi R (2012) Extension of the Darcy–Forchheimer law for shear-thinning fluids and validation via pore-scale flow simulations. Transp Porous Media 1–20

Truex MJ, Vermeul VR, Mendoza DP, Fritz BG, Mackley RD, Oostrom M, Wietsma TW, Macbeth TW (2011) Injection of zero-valent iron into an unconfined aquifer using shear-thinning fluids. Ground Water Monit Remediat 31(1):50–58

Uhlherr PHT, Guo J, Tiu C, Zhang XM, Zhou JZQ, Fang TN (2005) The shear-induced solid–liquid transition in yield stress materials with chemically different structures. J Nonnewton Fluid Mech 125(2–3):101–119

Wientjes RHW, Duits MHG, Jongschaap RJJ, Mellema J (2000) Linear rheology of guar gum solutions. Macromolecules 33(26):9594–9605

Williams ML, Landel RF, Ferry JD (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 77(14):3701–3707

Xiu Z, Jin Z, Li T, Mahendra S, Lowry GV, Alvarez PJJ (2010) Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene. Bioresour Technol 101(4):1141–1146

Zhang W (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5(3):323–332

Zhong L, Szecsody J, Oostrom M, Truex M, Shen X, Li X (2011) Enhanced remedial amendment delivery to subsurface using shear thinning fluid and aqueous foam. J Hazard Mater 191(1–3):249–257

Zolla V, Freyria FS, Sethi R, Di Molfetta A (2009) Hydrogeochemical and biological processes affecting the long-term performance of an iron-based permeable reactive barrier. J Environ Qual 38(3):897–908