Vis-NIR Spectroscopy for Soil Organic Carbon Assessment: A Meta-Analysis

Eurasian Soil Science - Tập 56 - Trang 1605-1617 - 2023
A. V. Chinilin1, G. V. Vindeker1, I. Yu. Savin1,2
1Dokuchaev Soil Science Institute, Moscow, Russia
2Ecological Faculty, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia

Tóm tắt

The research papers assessing the content of soil organic carbon with the help of Vis-NIR spectroscopy approaches are systematically analyzed and subject to meta-analysis. This meta-analysis included 134 studies published in 1986–2022 with a total sample of 709 values of quantitative metrics. The papers have been searched for in databases of scientific periodicals (RSCI, Science Direct, Scopus, and Google Scholar) by the key word combination “Vis-NIR spectroscopy AND soil organic carbon”. The meta-analysis using the nonparametric one-sided Kruskal–Wallis variance analysis in conjunction with nonparametric pairwise method shows the presence of a statistically significant difference between the median values of the accepted quantitative metrics of the predictive power of the models, namely, coefficient of determination (R2cv/val), root mean square error (RMSE), and the ratio of performance to deviation (RPD). The best performance of the preprocessing method for spectral curves is demonstrated and the estimates of soil organic carbon content obtained by laboratory and field spectroscopies are compared.

Tài liệu tham khảo

V. L. Andronikov, “On the spectral reflectivity of some soils in the forest-steppe,” Izv. Akad. Nauk SSSR. Ser. Geogr., No. 3, 93–97 (1958). E. I. Karavanova, Optical Properties of Soils and Their Nature (Mosk. Gos. Univ., Moscow, 2003) [in Russian]. I. I. Karmanov, Spectral Reflectivity and Color of Soils as an Indicator of Their Properties (Kolos, Moscow, 1974) [in Russian]. I. I. Karmanov, “The study of soils by the spectral composition of reflected radiation,” Pochvovedenie, No. 4, 34–47 (1970). M. M. Kononova, Soil Organic Matter. Its Nature, Properties and Methods of Study (Izd. Akad. Nauk SSSR, Moscow, 1963) [in Russian]. Yu. A. Liverovskii, “The use of aerial methods in the study of soil cover,” in Aerial Methods for Studying Natural Resources (Geografgiz, Moscow, 1962), pp. 115–129. N. A. Mikhailova and D. S. Orlov, Optical Properties of Soils and Soil Components (Nauka, Moscow, 1986) [in Russian]. D. S. Orlov, N. I. Sukhanova, and M. S. Rozanova, Spectral Reflectivity of Soils and Their Components (Mosk. Gos. Univ., Moscow, 2001) [in Russian]. O. E. Rodionova and A. L. Pomerantsev, “Chemometrics: achievements and prospects,” Usp. Khim., No. 4, 302–321 (2006). I. Yu. Savin and G. V. Vindeker, “Some specifics in using optical properties of soil surface for moisture detection,” Eurasian Soil Sci. 54 (7), 1019–1027 (2021). https://doi.org/10.1134/S1064229321070127 Yu. S. Tolchel’nikov, Optical Properties of the Landscape (As Applied to Aerial Photography) (Nauka, Leningrad, 1974) [in Russian]. I. Barra, S. M. Haefele, R. Sakrabani, and F. Kebede, “Soil spectroscopy with the use of chemometrics, machine learning and pre-processing techniques in soil diagnosis: recent advances—a review,” TrAC, Trends Anal. Chem. 135, (2021). https://doi.org/10.1016/j.trac.2020.116166 T. Behrens, RosselR. A. Viscarra, L. Ramirez-Lopez, and P. Baumann, “Soil spectroscopy with the Gaussian pyramid scale space,” Geoderma 426, (2022) https://doi.org/10.1016/j.geoderma.2022.116095 E. Ben Dor, C. Ong, and I. C. Lau, “Reflectance measurements of soils in the laboratory: Standards and protocols,” Geoderma 245–246, 112–124 (2015). https://doi.org/10.1016/j.geoderma.2015.01.002 H. Buddenbaum and M. Steffens, “The effects of spectral pretreatments on chemometric analyses of soil profiles using laboratory imaging spectroscopy,” Appl. Environ. Soil Sci. 2012, 1–12 (2012). https://doi.org/10.1155/2012/274903 F. Castaldi, “Sentinel-2 and Landsat-8 multi-temporal series to estimate topsoil properties on croplands,” Remote Sens. 13, (2021). https://doi.org/10.3390/rs13173345 F. Castaldi, S. Chabrillat, C. Chartin, V. Genot, A. R. Jones, and B. van Wesemael, “Estimation of soil organic carbon in arable soil in Belgium and Luxembourg with the LUCAS topsoil database,” Eur. J. Soil Sci. 69, 592–603 (2018b). https://doi.org/10.1111/ejss.12553 F. Castaldi, S. Chabrillat, A. Don, and B. van Wesemael, “Soil organic carbon mapping using LUCAS topsoil database and sentinel-2 data: an approach to reduce soil moisture and crop residue effects,” Remote Sens. 11, (2019). https://doi.org/10.3390/rs11182121 F. Castaldi, S. Chabrillat, A. Jones, K. Vreys, B. Bomans, and B. van Wesemael, “Soil organic carbon estimation in croplands by hyperspectral remote APEX data using the LUCAS topsoil database,” Remote Sens. 10, (2018). https://doi.org/10.3390/rs10020153 S. Chakraborty, B. Li, D. C. Weindorf, and C. L. S. Morgan, “External parameter orthogonalisation of Eastern European VisNIR-DRS soil spectra,” Geoderma 337, 65–75 (2019). https://doi.org/10.1016/j.geoderma.2018.09.015 A. V. Chinilin and I. Yu. Savin, “Comparison of the effectiveness of various ways of preprocessing spectrometric data in order to predict the concentration of organic soil carbon,” J. Opt. Technol. 85, 789–795 (2018). https://doi.org/10.1364/JOT.85.000789 J. A. Coblinski, É. Giasson, J. A. M. Demattê, A. C. Dotto, J. J. F. Costa, and R. Vašát, “Prediction of soil texture classes through different wavelength regions of reflectance spectroscopy at various soil depths,” Catena 189, (2020). https://doi.org/10.1016/j.catena.2020.104485 H. R. Condit, “The spectral reflectance of American soils,” Photogramm. Eng. 36, 955–966 (1970). A. C. Dotto, R. S. D. Dalmolin, A. ten Caten, and S. Grunwald, “A systematic study on the application of scatter-corrective and spectral-derivative preprocessing for multivariate prediction of soil organic carbon by Vis-NIR spectra,” Geoderma 314, 262–274 (2018). https://doi.org/10.1016/j.geoderma.2017.11.006 A. Gholizadeh, J. A. Coblinski, M. Saberioon, E. Ben-Dor, O. Drábek, J. A. M. Demattê, and L. Borůvka, “vis–NIR and XRF data fusion and feature selection to estimate potentially toxic elements in soil,” Sensors 21, (2021). https://doi.org/10.3390/s21072386 A. Gholizadeh, R. A. Viscarra Rossel, M. Saberioon, L. Borůvka, J. Kratina, and L. Pavlů, “National-scale spectroscopic assessment of soil organic carbon in forests of the Czech Republic,” Geoderma 385, (2021b). https://doi.org/10.1016/j.geoderma.2020.114832 G. Gozukara, E. Akca, O. Dengiz, S. Kapur, and A. Adak, “Soil particle size prediction using Vis-NIR and pXRF spectra in a semiarid agricultural ecosystem in Central Anatolia of Türkiye,” Catena 217, (2022). https://doi.org/10.1016/j.catena.2022.106514 G. Gozukara, A. E. Hartemink, and Y. Zhang, “Soil Catena characterization using pXRF and Vis-NIR spectroscopy in Northwest Turkey,” Eurasian Soil Sci. 54, 1–15 (2021). https://doi.org/10.1134/S1064229322030061 Y. Hong, Y. Chen, S. Chen, R. Shen, L. Guo, Y. Liu, and A. Mounem Mouazen, “Improving spectral estimation of soil inorganic carbon in urban and suburban areas by coupling continuous wavelet transform with geographical stratification,” Geoderma 430, (2023). https://doi.org/10.1016/j.geoderma.2022.116284 B. Igne, J. B. Reeves, G. McCarty, W. D. Hively, E. Lund, and C. R. Hurburgh, “Evaluation of spectral pretreatments, partial least squares, least squares support vector machines and locally weighted regression for quantitative spectroscopic analysis of soils,” J. Near Infrared Spectrosc. 18, 167–176 (2010). https://doi.org/10.1255/jnirs.883 F. Khayamim, J. Wetterlind, H. Khademi, A. H. J. Robertson, A. F. Cano, and B. Stenberg, “Using visible and near infrared spectroscopy to estimate carbonates and gypsum in soils in arid and subhumid regions of Isfahan, Iran,” J. Near Infrared Spectrosc. 23, 155–165 (2015). https://doi.org/10.1255/jnirs.1157 M. Knadel, F. Castaldi, R. Barbetti, E. Ben-Dor, A. Gholizadeh, and R. Lorenzetti, “Mathematical techniques to remove moisture effects from visible–near-infrared–shortwave-infrared soil spectra – review,” Appl. Spectrosc. Rev., 1–34 (2022). https://doi.org/10.1080/05704928.2022.2128365 N. M. M. Knox, S. Grunwald, M. L. L. McDowell, G. L. L. Bruland, D. B. B. Myers, and W. G. G. Harris, “Modelling soil carbon fractions with visible near-infrared (VNIR) and mid-infrared (MIR) spectroscopy,” Geoderma 239–240, 229–239 (2015). https://doi.org/10.1016/j.geoderma.2014.10.019 M. Kuhn and K. Johnson, Applied Predictive Modeling (Springer, New York, 2013). https://doi.org/10.1007/978-1-4614-6849-3 S. Li, R. A. Viscarra Rossel, and R. Webster, “The cost-effectiveness of reflectance spectroscopy for estimating soil organic carbon” Eur. J. Soil Sci. 73, (2022). https://doi.org/10.1111/ejss.13202 Y. Liu, X. -Z. X. Pan, C. Wang, Y. Li, and R. Shi, “Predicting soil salinity with Vis–NIR spectra after removing the effects of soil moisture using external parameter orthogonalization,” PLoS One 10, (2015). https://doi.org/10.1371/journal.pone.0140688 S. G. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern Anal. Mach. Intell. 11, 674–693 (1989). https://doi.org/10.1109/34.192463 H. Martens and T. Næs, “Multivariate calibration,” in Chemometrics (Springer, Dordrecht, 1984), pp. 147–156. https://doi.org/10.1007/978-94-017-1026-8_5 M. B. McBride, “Estimating soil chemical properties by diffuse reflectance spectroscopy: promise versus reality,” Eur. J. Soil Sci. 73, (2022). https://doi.org/10.1111/ejss.13192 W. de S. Mendes, J. A. M. Demattê, B. R. Bonfatti, M. E. B. Resende, L. R. Campos, A. C. S. da Costa, “A novel framework to estimate soil mineralogy using soil spectroscopy,” Appl. Geochem. 127, (2021). https://doi.org/10.1016/j.apgeochem.2021.104909 B. Minasny and A. B. McBratney, “Digital soil mapping: a brief history and some lessons,” Geoderma 264, 301–311 (2016). https://doi.org/10.1016/j.geoderma.2015.07.017 C. Molnar, Interpretable Machine Learning: A Guide For Making Black Box Models Explainable (2022). https://christophm.github.io/interpretable-ml-book/ A. Morellos, X.-E. Pantazi, D. Moshou, T. Alexandridis, R. Whetton, G. Tziotzios, and J. Wiebensohn, “Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy,” Biosyst. Eng. 152, 104–116 (2016). https://doi.org/10.1016/j.biosystemseng.2016.04.018 J. M. Moura-Bueno, R. S. D. Dalmolin, A. ten Caten, A. C. Dotto, and J. A. M. Demattê, “Stratification of a local VIS-NIR-SWIR spectral library by homogeneity criteria yields more accurate soil organic carbon predictions,” Geoderma 337, 565–581 (2019). https://doi.org/10.1016/j.geoderma.2018.10.015 J. D. Muñoz and A. Kravchenko, “Soil carbon mapping using on-the-go near infrared spectroscopy, topography and aerial photographs,” Geoderma 166, 102–110 (2011). https://doi.org/10.1016/j.geoderma.2011.07.017 W. Ng, B. Malone, B. Minasny, and S. Jeon, “Near and mid infrared soil spectroscopy,” in Reference Module in Earth Systems and Environmental Sciences (Elsevier, 2022). https://doi.org/10.1016/B978-0-12-822974-3.00022-7 W. Ng, B. Minasny, and A. McBratney, “Convolutional neural network for soil microplastic contamination screening using infrared spectroscopy,” Sci. Total Environ. 702, (2020). https://doi.org/10.1016/j.scitotenv.2019.134723 I. Patil, “Visualizations with statistical details: the “ggstatsplot” approach,” J. Open Source Software 6, (2021). https://doi.org/10.21105/joss.03167 R. R. Poppiel, A. F. da S. Paiva, and J. A. M. Demattê, “Bridging the gap between soil spectroscopy and traditional laboratory: Insights for routine implementation,” Geoderma 425, (2022). https://doi.org/10.1016/j.geoderma.2022.116029 E. Prudnikova and I. Yu. Savin, “Some peculiarities of arable soil organic matter detection using optical remote sensing data,” Remote Sens. 13, (2021). https://doi.org/10.3390/rs13122313 P. V. Ramos, A. V. Inda, V. Barrón, D. S. Siqueira, J. Marques Júnior, D. D. B. Teixeira, “Color in subtropical brazilian soils as determined with a Munsell chart and by diffuse reflectance spectroscopy,” Catena 193, (2020). https://doi.org/10.1016/j.catena.2020.104609 H. U. Rehman, M. Knadel, L. W. Jonge, P. Moldrup, M. H. Greve, and E. Arthur, “Comparison of cation exchange capacity estimated from Vis–NIR spectral reflectance data and a pedotransfer function,” Vadose Zone J. 18, 1–8 (2019). https://doi.org/10.2136/vzj2018.10.0192 P. Roudier, C. B. Hedley, C. R. Lobsey, R. A. Viscarra Rossel, and C. Leroux, “Evaluation of two methods to eliminate the effect of water from soil vis–NIR spectra for predictions of organic carbon,” Geoderma 296, 98–107 (2017). https://doi.org/10.1016/j.geoderma.2017.02.014 U. J. dos Santos, J. A. M. Demattê, R. S. C. Menezes, A. C. Dotto, C. C. B. Guimarães, B. J. R. Alves, and D. C. Primo, “Predicting carbon and nitrogen by visible near-infrared (Vis-NIR) and mid-infrared (MIR) spectroscopy in soils of Northeast Brazil,” Geoderma Reg. 23, (2020). https://doi.org/10.1016/j.geodrs.2020.e00333 I. Y. Savin, M. A. Shishkin, and D. V. Sharychev, “Peculiarities of spectral reflectance of fractions with sizes from 20 to 5,000 microns in soil samples,” Dokuchaev Soil Bull. 112, 24–47. (2022). https://doi.org/10.19047/0136-1694-2022-112-24-47 A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem 36, 1627–1639 (1964). https://doi.org/10.1021/ac60214a047 D. C. Slaughter, M. G. Pelletier, and S. K. Upadhyaya, “Sensing soil moisture using NIR spectroscopy,” Appl. Eng. Agric. 17, (2001). https://doi.org/10.13031/2013.5449 Y. Song, Z. Shen, P. Wu, and R. A. Viscarra Rossel, “Wavelet geographically weighted regression for spectroscopic modelling of soil properties,” Sci. Rep. 11, (2021). https://doi.org/10.1038/s41598-021-96772-z P. T. Sorenson, C. Small, M. C. Tappert, S. A. Quideau, B. Drozdowski, A. Underwood, and A. Janz, “Monitoring organic carbon, total nitrogen, and pH for reclaimed soils using field reflectance spectroscopy,” Can. J. Soil Sci. 97, 241–248 (2017). https://doi.org/10.1139/cjss-2016-0116 J. M. J. M. Soriano-Disla, L. J. Janik, R. A. Viscarra Rossel, L. M. MacDonald, and M. J. McLaughlin, “The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties,” Appl. Spectrosc. Rev. 49, 139–186 (2014). https://doi.org/10.1080/05704928.2013.811081 M. Steffens, L. Zeh, D. M. Rogge, and H. Buddenbaum, “Quantitative mapping and spectroscopic characterization of particulate organic matter fractions in soil profiles with imaging VisNIR spectroscopy,” Sci. Rep. 11, (2021). https://doi.org/10.1038/s41598-021-95298-8 B. Stenberg, R. A. Viscarra Rossel, A. M. Mouazen, and J. Wetterlind, “Visible and near infrared spectroscopy in soil science,” Adv. Agric. 107, 163–215 (2010). https://doi.org/10.1016/S0065-2113(10)07005-7 A. Stevens, M. Nocita, G. Tóth, L. Montanarella, and B. van Wesemael, “Prediction of soil organic carbon at the european scale by visible and near infrared reflectance spectroscopy,” PLoS One 8, (2013). https://doi.org/10.1371/journal.pone.0066409 A. Stevens and L. Ramirez-Lopez, An Introduction to the “prospectr” Package. R Package Version 0.2.6. https://cran.r-project.org/package=prospectr. N. Tziolas, N. Tsakiridis, Y. Ogen, E. Kalopesa, E. Ben-Dor, J. Theocharis, and G. Zalidis, “An integrated methodology using open soil spectral libraries and Earth Observation data for soil organic carbon estimations in support of soil-related SDGs,” Remote Sens. Environ. 244, (2020). https://doi.org/10.1016/j.rse.2020.111793 R. A. Viscarra Rossel, T. Behrens, E. Ben?Dor, S. Chabrillat, J. A. M. Demattê, Y. Ge, and C. Gomez, “Diffuse reflectance spectroscopy for estimating soil properties: a technology for the 21st century,” Eur. J. Soil Sci. 73, (2022). https://doi.org/10.1111/ejss.13271 R. A. Viscarra Rossel, E. N. Bui, P. De Caritat, and N. J. McKenzie, “Mapping iron oxides and the color of Australian soil using visible-near-infrared reflectance spectra,” J. Geophys. Res. Earth Surf. 115, (2010). https://doi.org/10.1029/2009JF001645 R. A. Viscarra Rossel, S. R. Cattle, A. Ortega, and Y. Fouad, “In situ measurements of soil colour, mineral composition and clay content by vis–NIR spectroscopy,” Geoderma 150, 253–266 (2009). https://doi.org/10.1016/j.geoderma.2009.01.025 R. A. Viscarra Rossel and W. S. Hicks, “Soil organic carbon and its fractions estimated by visible-near infrared transfer functions,” Eur. J. Soil Sci. 66, 438–450 (2015). https://doi.org/10.1111/ejss.12237 R. A. Viscarra Rossel, Y. S. Jeon, I. O. A. Odeh, and A. B. McBratney, “Using a legacy soil sample to develop a mid-IR spectral library,” Soil Res. 46, (2008). https://doi.org/10.1071/SR07099 R. A. Viscarra Rossel, A. B. McBratney, and B. Minasny, Proximal Soil Sensing (Springer, New York, 2010). https://doi.org/10.1007/978-90-481-8859-8 A. M. J.-C. Wadoux, B. Malone, B. Minasny, M. Fajardo, and A. B. McBratney, Soil Spectral Inference with R (Springer, New York, 2021). https://doi.org/10.1007/978-3-030-64896-1 M. Wan, W. Hu, M. Qu, W. Li, C. Zhang, J. Kang, and Y. Hong, “Rapid estimation of soil cation exchange capacity through sensor data fusion of portable XRF spectrometry and Vis-NIR spectroscopy,” Geoderma 363, (2020). https://doi.org/10.1016/j.geoderma.2019.114163 X. Wang, Y. Zhang, P. M. Atkinson, and H. Yao, “Predicting soil organic carbon content in Spain by combining Landsat TM and ALOS PALSAR images,” Int. J. Appl. Earth Obs. Geoinf. 92, (2020). https://doi.org/10.1016/j.jag.2020.102182 Y. Wang, T. Huang, J. Liu, Z. Lin, S. Li, R. Wang, and Y. Ge, “Soil pH value, organic matter and macronutrients contents prediction using optical diffuse reflectance spectroscopy,” Comput. Electron. Agric. 111, 69–77 (2015). https://doi.org/10.1016/j.compag.2014.11.019 J. Wetterlind, RosselR. A. Viscarra, and M. Steffens, “Diffuse reflectance spectroscopy characterises the functional chemistry of soil organic carbon in agricultural soils,” Eur. J. Soil Sci. 73, (2022). Z. Xiaobo, Z. Jiewen, M. J. W. Povey, M. Holmes, and M. Hanpin, “Variables selection methods in near-infrared spectroscopy,” Anal. Chim. Acta 667, 14–32 (2010). https://doi.org/10.1016/j.aca.2010.03.048 S. Xu, Y. Zhao, M. Wang, and X. Shi, “Quantification of different forms of iron from intact soil cores of paddy fields with vis-NIR spectroscopy,” Soil Sci. Soc. Am. J. 82, 1497–1511 (2018). https://doi.org/10.2136/sssaj2018.01.0014 Y. Yang, Z. Shen, A. Bissett, and R. A. Viscarra Rossel, “Estimating soil fungal abundance and diversity at a macroecological scale with deep learning spectrotransfer functions,” Soil 8, 223–235 (2022). https://doi.org/10.5194/soil-8-223-2022 Y. Yang, RosselR. A. Viscarra, S. Li, A. Bissett, J. Lee, Z. Shi, T. Behrens, and L. Court, “Soil bacterial abundance and diversity better explained and predicted with spectro-transfer functions,” Soil Biol. Biochem. 129, 29–38 (2019). https://doi.org/10.1016/j.soilbio.2018.11.005 L. Zhong, X. Guo, Z. Xu, and M. Ding, “Soil properties: their prediction and feature extraction from the LUCAS spectral library using deep convolutional neural networks,” Geoderma 402, (2021). https://doi.org/10.1016/j.geoderma.2021.115366 Y. Zhou, S. Chen, B. Hu, W. Ji, S. Li, Y. Hong, and H. Xu, “Global soil salinity prediction by open soil Vis-NIR spectral library,” Remote Sens. 14, (2022). https://doi.org/10.3390/rs14215627 W. Ziechmann, “Spectroscopic investigations of lignin, humic substances and peat,” Geochim. Cosmochim. Acta 28, 1555–1566 (1964). https://doi.org/10.1016/0016-7037(64)90006-7