Virus glycosylation: role in virulence and immune interactions

Trends in Microbiology - Tập 15 Số 5 - Trang 211-218 - 2007
David J Vigerust1, Virginia L. Shepherd2,3
1Department of Pediatrics, Program in Vaccine Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
2Department of Pathology, Vanderbilt University School of Medicine, Nashville, TN 37212 USA
3Department of Veteran Affairs, Nashville, TN 37212, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Land, 2001, Folding of the human immunodeficiency virus type 1 envelope glycoprotein in the endoplasmic reticulum, Biochimie, 83, 783, 10.1016/S0300-9084(01)01314-1

Slater-Handshy, 2004, HCV E2 glycoprotein: mutagenesis of N-linked glycosylation sites and its effects on E2 expression and processing, Virology, 319, 36, 10.1016/j.virol.2003.10.008

Meunier, 1999, Analysis of the glycosylation sites of hepatitis C virus (HCV) glycoprotein E1 and the influence of E1 glycans on the formation of the HCV glycoprotein complex, J. Gen. Virol., 80, 887, 10.1099/0022-1317-80-4-887

Wagner, 2000, Interdependence of hemagglutinin glycosylation and neuraminidase as regulators of influenza virus growth: a study by reverse genetics, J. Virol., 74, 6316, 10.1128/JVI.74.14.6316-6323.2000

Klenk, 2002, Importance of hemagglutinin glycosylation for the biological functions of influenza virus, Virus Res., 82, 73, 10.1016/S0168-1702(01)00389-6

Baigent, 2001, Glycosylation of haemagglutinin and stalk-length of neuraminidase combine to regulate the growth of avian influenza viruses in tissue culture, Virus Res., 79, 177, 10.1016/S0168-1702(01)00272-6

Tsuchiya, 2002, Role of overlapping glycosylation sequons in antigenic properties, intracellular transport and biological activities of influenza A/H2N2 virus haemagglutinin, J. Gen. Virol., 83, 3067, 10.1099/0022-1317-83-12-3067

Tsuchiya, 2002, Effect of addition of new oligosaccharide chains to the globular head of influenza A/H2N2 virus haemagglutinin on the intracellular transport and biological activities of the molecule, J. Gen. Virol., 83, 1137, 10.1099/0022-1317-83-5-1137

Abe, 2004, Effect of the addition of oligosaccharides on the biological activities and antigenicity of influenza A/H3N2 virus hemagglutinin, J. Virol., 78, 9605, 10.1128/JVI.78.18.9605-9611.2004

Kaverin, 2002, Structure of antigenic sites on the haemagglutinin molecule of H5 avian influenza virus and phenotypic variation of escape mutants, J. Gen. Virol., 83, 2497, 10.1099/0022-1317-83-10-2497

Daniels, 2003, N-linked glycans direct the cotranslational folding pathway of influenza hemagglutinin, Mol. Cell, 11, 79, 10.1016/S1097-2765(02)00821-3

Keil, 1984, Carbohydrates of influenza virus. V. Oligosaccharides attached to individual glycosylation sites of the hemagglutinin of fowl plague virus, Virology, 133, 77, 10.1016/0042-6822(84)90427-6

Skehel, 2000, Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin, Annu. Rev. Biochem., 69, 531, 10.1146/annurev.biochem.69.1.531

Hoffmann, 2002, Eight-plasmid system for rapid generation of influenza virus vaccines, Vaccine, 20, 3165, 10.1016/S0264-410X(02)00268-2

Deshpande, 1987, Glycosylation affects cleavage of an H5N2 influenza virus hemagglutinin and regulates virulence, Proc. Natl. Acad. Sci. U. S. A., 84, 36, 10.1073/pnas.84.1.36

Zambon, 1999, Epidemiology and pathogenesis of influenza, J. Antimicrob. Chemother., 44, 3, 10.1093/jac/44.suppl_2.3

Fenouillet, 1990, Role of N-linked glycans of envelope glycoproteins in infectivity of human immunodeficiency virus type 1, J. Virol., 64, 2841, 10.1128/JVI.64.6.2841-2848.1990

Montefiori, 1988, Role of protein N-glycosylation in pathogenesis of human immunodeficiency virus type 1, Proc. Natl. Acad. Sci. U. S. A., 85, 9248, 10.1073/pnas.85.23.9248

Korber, 2001, Evolutionary and immunological implications of contemporary HIV-1 variation, Br. Med. Bull., 58, 19, 10.1093/bmb/58.1.19

Sagar, 2006, Human immunodeficiency virus type 1 V1-V2 envelope loop sequences expand and add glycosylation sites over the course of infection, and these modifications affect antibody neutralization sensitivity, J. Virol., 80, 9586, 10.1128/JVI.00141-06

Wolk, 2006, N-Glycans in the gp120 V1/V2 domain of the HIV-1 strain NL4-3 are indispensable for viral infectivity and resistance against antibody neutralization, Med. Microbiol. Immunol. (Berl.), 195, 165, 10.1007/s00430-006-0016-z

Sanders, 2002, The mannose-dependent epitope for neutralizing antibody 2G12 on human immunodeficiency virus type 1 glycoprotein gp120, J. Virol., 76, 7293, 10.1128/JVI.76.14.7293-7305.2002

Calarese, 2005, Dissection of the carbohydrate specificity of the broadly neutralizing anti-HIV-1 antibody 2G12, Proc. Natl. Acad. Sci. U. S. A., 102, 13372, 10.1073/pnas.0505763102

Calarese, 2003, Antibody domain exchange is an immunological solution to carbohydrate cluster recognition, Science, 300, 2065, 10.1126/science.1083182

Wei, 2003, Antibody neutralization and escape by HIV-1, Nature, 422, 307, 10.1038/nature01470

Frost, 2005, Neutralizing antibody responses drive the evolution of human immunodeficiency virus type 1 envelope during recent HIV infection, Proc. Natl. Acad. Sci. U. S. A., 102, 18514, 10.1073/pnas.0504658102

Poon, 2007, Evolutionary interactions between N-linked glycosylation sites in the HIV-1 envelope, PLoS Comput. Biol., 3, e11, 10.1371/journal.pcbi.0030011

Romanelli, 2004, Chloroquine and hydroxychloroquine as inhibitors of human immunodeficiency virus (HIV-1) activity, Curr. Pharm. Des., 10, 2643, 10.2174/1381612043383791

Boelaert, 1999, Chloroquine exerts an additive in vitro anti-HIV type 1 effect when associated with didanosine and hydroxyurea, AIDS Res. Hum. Retroviruses, 15, 1241, 10.1089/088922299310133

Sperber, 1995, Hydroxychloroquine treatment of patients with human immunodeficiency virus type 1, Clin. Ther., 17, 622, 10.1016/0149-2918(95)80039-5

Paton, 2005, Hydroxychloroquine, hydroxyurea and didanosine as initial therapy for HIV-infected patients with low viral load: safety, efficacy and resistance profile after 144 weeks, HIV Med., 6, 13, 10.1111/j.1468-1293.2005.00259.x

Savarino, 2006, New insights into the antiviral effects of chloroquine, Lancet Infect. Dis., 6, 67, 10.1016/S1473-3099(06)70361-9

Shirato, 2004, Viral envelope protein glycosylation is a molecular determinant of the neuroinvasiveness of the New York strain of West Nile virus, J. Gen. Virol., 85, 3637, 10.1099/vir.0.80247-0

Scherret, 2001, Biological significance of glycosylation of the envelope protein of Kunjin virus, Ann. N. Y. Acad. Sci., 951, 361, 10.1111/j.1749-6632.2001.tb02719.x

Beasley, 2005, Envelope protein glycosylation status influences mouse neuroinvasion phenotype of genetic lineage 1 West Nile virus strains, J. Virol., 79, 8339, 10.1128/JVI.79.13.8339-8347.2005

Lad, 2000, Effect of tunicamycin on expression of epitopes on Japanese encephalitis virus glycoprotein E in porcine kidney cells, Acta Virol., 44, 359

Hanna, 2005, N-linked glycosylation of West Nile virus envelope proteins influences particle assembly and infectivity, J. Virol., 79, 13262, 10.1128/JVI.79.21.13262-13274.2005

Beyene, 2004, Influence of N-linked glycans on intracellular transport of hepatitis C virus E1 chimeric glycoprotein and its role in pseudotype virus infectivity, Virology, 324, 273, 10.1016/j.virol.2004.03.039

Goffard, 2005, Role of N-linked glycans in the functions of hepatitis C virus envelope glycoproteins, J. Virol., 79, 8400, 10.1128/JVI.79.13.8400-8409.2005

Goffard, 2003, Glycosylation of hepatitis C virus envelope proteins, Biochimie, 85, 295, 10.1016/S0300-9084(03)00004-X

Eichler, 2006, The role of single N-glycans in proteolytic processing and cell surface transport of the Lassa virus glycoprotein GP-C, Virol. J., 3, 41, 10.1186/1743-422X-3-41

Aguilar, 2006, N-glycans on Nipah virus fusion protein protect against neutralization but reduce membrane fusion and viral entry, J. Virol., 80, 4878, 10.1128/JVI.80.10.4878-4889.2006

Melanson, 2006, Addition of N-glycans in the stalk of the Newcastle disease virus HN protein blocks its interaction with the F protein and prevents fusion, J. Virol., 80, 623, 10.1128/JVI.80.2.623-633.2006

Shi, 2005, Role of N-linked glycans on bunyamwera virus glycoproteins in intracellular trafficking, protein folding, and virus infectivity, J. Virol., 79, 13725, 10.1128/JVI.79.21.13725-13734.2005

Moll, 2004, Influence of N-glycans on processing and biological activity of the nipah virus fusion protein, J. Virol., 78, 7274, 10.1128/JVI.78.13.7274-7278.2004

Lin, 2003, Differential N-linked glycosylation of human immunodeficiency virus and Ebola virus envelope glycoproteins modulates interactions with DC-SIGN and DC-SIGNR, J. Virol., 77, 1337, 10.1128/JVI.77.2.1337-1346.2003

Bossart, 2005, Receptor binding, fusion inhibition, and induction of cross-reactive neutralizing antibodies by a soluble G glycoprotein of Hendra virus, J. Virol., 79, 6690, 10.1128/JVI.79.11.6690-6702.2005

Oostra, 2006, Glycosylation of the severe acute respiratory syndrome coronavirus triple-spanning membrane proteins 3a and M, J. Virol., 80, 2326, 10.1128/JVI.80.5.2326-2336.2006

Schowalter, 2006, Characterization of human metapneumovirus F protein-promoted membrane fusion: critical roles for proteolytic processing and low pH, J. Virol., 80, 10931, 10.1128/JVI.01287-06

Cambi, 2004, Microdomains of the C-type lectin DC-SIGN are portals for virus entry into dendritic cells, J. Cell Biol., 164, 145, 10.1083/jcb.200306112

Cambi, 2003, Dual function of C-type lectin-like receptors in the immune system, Curr. Opin. Cell Biol., 15, 539, 10.1016/j.ceb.2003.08.004

Reading, 2000, Involvement of the mannose receptor in infection of macrophages by influenza virus, J. Virol., 74, 5190, 10.1128/JVI.74.11.5190-5197.2000

Nguyen, 2003, Involvement of macrophage mannose receptor in the binding and transmission of HIV by macrophages, Eur. J. Immunol., 33, 483, 10.1002/immu.200310024

Vigerust, 2005, HIV-1 Nef mediates post-translational down-regulation and redistribution of the mannose receptor, J. Leukoc. Biol., 77, 522, 10.1189/jlb.0804454

Lozach, 2003, DC-SIGN and L-SIGN are high affinity binding receptors for hepatitis C virus glycoprotein E2, J. Biol. Chem., 278, 20358, 10.1074/jbc.M301284200

Davis, 2006, The location of asparagine-linked glycans on West Nile virions controls their interactions with CD209 (DC-SIGN), J. Biol. Chem., 281, 37183, 10.1074/jbc.M605429200

Davis, 2006, West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection, J. Virol., 80, 1290, 10.1128/JVI.80.3.1290-1301.2006

Marzi, 2006, The signal peptide of the ebolavirus glycoprotein influences interaction with the cellular lectins DC-SIGN and DC-SIGNR, J. Virol., 80, 6305, 10.1128/JVI.02545-05

Marzi, 2004, DC-SIGN and DC-SIGNR interact with the glycoprotein of Marburg virus and the S protein of severe acute respiratory syndrome coronavirus, J. Virol., 78, 12090, 10.1128/JVI.78.21.12090-12095.2004

Turville, 2001, HIV gp120 receptors on human dendritic cells, Blood, 98, 2482, 10.1182/blood.V98.8.2482

Liu, 2004, CD4-independent infection of astrocytes by human immunodeficiency virus type 1: requirement for the human mannose receptor, J. Virol., 78, 4120, 10.1128/JVI.78.8.4120-4133.2004

Gramberg, 2005, LSECtin interacts with filovirus glycoproteins and the spike protein of SARS coronavirus, Virology, 340, 224, 10.1016/j.virol.2005.06.026

Reading, 1997, Collectin-mediated antiviral host defense of the lung: evidence from influenza virus infection of mice, J. Virol., 71, 8204, 10.1128/JVI.71.11.8204-8212.1997

Thielens, 2002, Interaction of C1q and mannan-binding lectin with viruses, Immunobiology, 205, 563, 10.1078/0171-2985-00155

White, 2000, Enhanced antiviral and opsonic activity of a human mannose-binding lectin and surfactant protein D chimera, J. Immunol., 165, 2108, 10.4049/jimmunol.165.4.2108

Hartshorn, 1994, Evidence for a protective role of pulmonary surfactant protein D (SP-D) against influenza A viruses, J. Clin. Invest., 94, 311, 10.1172/JCI117323

Meschi, 2005, Surfactant protein D binds to human immunodeficiency virus (HIV) envelope protein gp120 and inhibits HIV replication, J. Gen. Virol., 86, 3097, 10.1099/vir.0.80764-0

Witvrouw, 2005, Resistance of human immunodeficiency virus type 1 to the high-mannose binding agents cyanovirin N and concanavalin A, J. Virol., 79, 7777, 10.1128/JVI.79.12.7777-7784.2005

Williams, 2005, Crystal structures of the HIV-1 inhibitory cyanobacterial protein MVL free and bound to Man3GlcNAc2: structural basis for specificity and high-affinity binding to the core pentasaccharide from n-linked oligomannoside, J. Biol. Chem., 280, 29269, 10.1074/jbc.M504642200

Balzarini, 2007, Carbohydrate-binding agents efficiently prevent dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN)-directed HIV-1 transmission to T lymphocytes, Mol. Pharmacol., 71, 3, 10.1124/mol.106.030155

O’Keefe, 2003, Potent anti-influenza activity of cyanovirin-N and interactions with viral hemagglutinin, Antimicrob. Agents Chemother., 47, 2518, 10.1128/AAC.47.8.2518-2525.2003

Hawgood, 2004, Pulmonary collectins modulate strain-specific influenza a virus infection and host responses, J. Virol., 78, 8565, 10.1128/JVI.78.16.8565-8572.2004

LeVine, 2001, Surfactant protein D enhances clearance of influenza A virus from the lung in vivo, J. Immunol., 167, 5868, 10.4049/jimmunol.167.10.5868

Hartshorn, 2006, Salivary agglutinin and lung scavenger receptor cysteine-rich glycoprotein 340 have broad anti-influenza activities and interactions with surfactant protein D that vary according to donor source and sialylation, Biochem. J., 393, 545, 10.1042/BJ20050695

White, 2005, Cooperative anti-influenza activities of respiratory innate immune proteins and neuraminidase inhibitor, Am. J. Physiol. Lung Cell. Mol. Physiol., 288, L831, 10.1152/ajplung.00365.2004

Ji, 2005, Mannose binding lectin (MBL) and HIV, Mol. Immunol., 42, 145, 10.1016/j.molimm.2004.06.015

Hart, 2002, High mannose glycans and sialic acid on gp120 regulate binding of mannose-binding lectin (MBL) to HIV type 1, AIDS Res. Hum. Retroviruses, 18, 1311, 10.1089/088922202320886352

Geijtenbeek, 2000, DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells, Cell, 100, 587, 10.1016/S0092-8674(00)80694-7

Wang, 2004, DC-SIGN: binding receptors for hepatitis C virus, Chin. Med. J. (Engl.), 117, 1395

Li, 2006, The glycosylation site in the envelope protein of West Nile virus (Sarafend) plays an important role in replication and maturation processes, J. Gen. Virol., 87, 613, 10.1099/vir.0.81320-0