Virus glycosylation: role in virulence and immune interactions
Tóm tắt
Từ khóa
Tài liệu tham khảo
Land, 2001, Folding of the human immunodeficiency virus type 1 envelope glycoprotein in the endoplasmic reticulum, Biochimie, 83, 783, 10.1016/S0300-9084(01)01314-1
Slater-Handshy, 2004, HCV E2 glycoprotein: mutagenesis of N-linked glycosylation sites and its effects on E2 expression and processing, Virology, 319, 36, 10.1016/j.virol.2003.10.008
Meunier, 1999, Analysis of the glycosylation sites of hepatitis C virus (HCV) glycoprotein E1 and the influence of E1 glycans on the formation of the HCV glycoprotein complex, J. Gen. Virol., 80, 887, 10.1099/0022-1317-80-4-887
Wagner, 2000, Interdependence of hemagglutinin glycosylation and neuraminidase as regulators of influenza virus growth: a study by reverse genetics, J. Virol., 74, 6316, 10.1128/JVI.74.14.6316-6323.2000
Klenk, 2002, Importance of hemagglutinin glycosylation for the biological functions of influenza virus, Virus Res., 82, 73, 10.1016/S0168-1702(01)00389-6
Baigent, 2001, Glycosylation of haemagglutinin and stalk-length of neuraminidase combine to regulate the growth of avian influenza viruses in tissue culture, Virus Res., 79, 177, 10.1016/S0168-1702(01)00272-6
Tsuchiya, 2002, Role of overlapping glycosylation sequons in antigenic properties, intracellular transport and biological activities of influenza A/H2N2 virus haemagglutinin, J. Gen. Virol., 83, 3067, 10.1099/0022-1317-83-12-3067
Tsuchiya, 2002, Effect of addition of new oligosaccharide chains to the globular head of influenza A/H2N2 virus haemagglutinin on the intracellular transport and biological activities of the molecule, J. Gen. Virol., 83, 1137, 10.1099/0022-1317-83-5-1137
Abe, 2004, Effect of the addition of oligosaccharides on the biological activities and antigenicity of influenza A/H3N2 virus hemagglutinin, J. Virol., 78, 9605, 10.1128/JVI.78.18.9605-9611.2004
Kaverin, 2002, Structure of antigenic sites on the haemagglutinin molecule of H5 avian influenza virus and phenotypic variation of escape mutants, J. Gen. Virol., 83, 2497, 10.1099/0022-1317-83-10-2497
Daniels, 2003, N-linked glycans direct the cotranslational folding pathway of influenza hemagglutinin, Mol. Cell, 11, 79, 10.1016/S1097-2765(02)00821-3
Keil, 1984, Carbohydrates of influenza virus. V. Oligosaccharides attached to individual glycosylation sites of the hemagglutinin of fowl plague virus, Virology, 133, 77, 10.1016/0042-6822(84)90427-6
Skehel, 2000, Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin, Annu. Rev. Biochem., 69, 531, 10.1146/annurev.biochem.69.1.531
Hoffmann, 2002, Eight-plasmid system for rapid generation of influenza virus vaccines, Vaccine, 20, 3165, 10.1016/S0264-410X(02)00268-2
Deshpande, 1987, Glycosylation affects cleavage of an H5N2 influenza virus hemagglutinin and regulates virulence, Proc. Natl. Acad. Sci. U. S. A., 84, 36, 10.1073/pnas.84.1.36
Zambon, 1999, Epidemiology and pathogenesis of influenza, J. Antimicrob. Chemother., 44, 3, 10.1093/jac/44.suppl_2.3
Fenouillet, 1990, Role of N-linked glycans of envelope glycoproteins in infectivity of human immunodeficiency virus type 1, J. Virol., 64, 2841, 10.1128/JVI.64.6.2841-2848.1990
Montefiori, 1988, Role of protein N-glycosylation in pathogenesis of human immunodeficiency virus type 1, Proc. Natl. Acad. Sci. U. S. A., 85, 9248, 10.1073/pnas.85.23.9248
Korber, 2001, Evolutionary and immunological implications of contemporary HIV-1 variation, Br. Med. Bull., 58, 19, 10.1093/bmb/58.1.19
Sagar, 2006, Human immunodeficiency virus type 1 V1-V2 envelope loop sequences expand and add glycosylation sites over the course of infection, and these modifications affect antibody neutralization sensitivity, J. Virol., 80, 9586, 10.1128/JVI.00141-06
Wolk, 2006, N-Glycans in the gp120 V1/V2 domain of the HIV-1 strain NL4-3 are indispensable for viral infectivity and resistance against antibody neutralization, Med. Microbiol. Immunol. (Berl.), 195, 165, 10.1007/s00430-006-0016-z
Sanders, 2002, The mannose-dependent epitope for neutralizing antibody 2G12 on human immunodeficiency virus type 1 glycoprotein gp120, J. Virol., 76, 7293, 10.1128/JVI.76.14.7293-7305.2002
Calarese, 2005, Dissection of the carbohydrate specificity of the broadly neutralizing anti-HIV-1 antibody 2G12, Proc. Natl. Acad. Sci. U. S. A., 102, 13372, 10.1073/pnas.0505763102
Calarese, 2003, Antibody domain exchange is an immunological solution to carbohydrate cluster recognition, Science, 300, 2065, 10.1126/science.1083182
Frost, 2005, Neutralizing antibody responses drive the evolution of human immunodeficiency virus type 1 envelope during recent HIV infection, Proc. Natl. Acad. Sci. U. S. A., 102, 18514, 10.1073/pnas.0504658102
Poon, 2007, Evolutionary interactions between N-linked glycosylation sites in the HIV-1 envelope, PLoS Comput. Biol., 3, e11, 10.1371/journal.pcbi.0030011
Romanelli, 2004, Chloroquine and hydroxychloroquine as inhibitors of human immunodeficiency virus (HIV-1) activity, Curr. Pharm. Des., 10, 2643, 10.2174/1381612043383791
Boelaert, 1999, Chloroquine exerts an additive in vitro anti-HIV type 1 effect when associated with didanosine and hydroxyurea, AIDS Res. Hum. Retroviruses, 15, 1241, 10.1089/088922299310133
Sperber, 1995, Hydroxychloroquine treatment of patients with human immunodeficiency virus type 1, Clin. Ther., 17, 622, 10.1016/0149-2918(95)80039-5
Paton, 2005, Hydroxychloroquine, hydroxyurea and didanosine as initial therapy for HIV-infected patients with low viral load: safety, efficacy and resistance profile after 144 weeks, HIV Med., 6, 13, 10.1111/j.1468-1293.2005.00259.x
Savarino, 2006, New insights into the antiviral effects of chloroquine, Lancet Infect. Dis., 6, 67, 10.1016/S1473-3099(06)70361-9
Shirato, 2004, Viral envelope protein glycosylation is a molecular determinant of the neuroinvasiveness of the New York strain of West Nile virus, J. Gen. Virol., 85, 3637, 10.1099/vir.0.80247-0
Scherret, 2001, Biological significance of glycosylation of the envelope protein of Kunjin virus, Ann. N. Y. Acad. Sci., 951, 361, 10.1111/j.1749-6632.2001.tb02719.x
Beasley, 2005, Envelope protein glycosylation status influences mouse neuroinvasion phenotype of genetic lineage 1 West Nile virus strains, J. Virol., 79, 8339, 10.1128/JVI.79.13.8339-8347.2005
Lad, 2000, Effect of tunicamycin on expression of epitopes on Japanese encephalitis virus glycoprotein E in porcine kidney cells, Acta Virol., 44, 359
Hanna, 2005, N-linked glycosylation of West Nile virus envelope proteins influences particle assembly and infectivity, J. Virol., 79, 13262, 10.1128/JVI.79.21.13262-13274.2005
Beyene, 2004, Influence of N-linked glycans on intracellular transport of hepatitis C virus E1 chimeric glycoprotein and its role in pseudotype virus infectivity, Virology, 324, 273, 10.1016/j.virol.2004.03.039
Goffard, 2005, Role of N-linked glycans in the functions of hepatitis C virus envelope glycoproteins, J. Virol., 79, 8400, 10.1128/JVI.79.13.8400-8409.2005
Goffard, 2003, Glycosylation of hepatitis C virus envelope proteins, Biochimie, 85, 295, 10.1016/S0300-9084(03)00004-X
Eichler, 2006, The role of single N-glycans in proteolytic processing and cell surface transport of the Lassa virus glycoprotein GP-C, Virol. J., 3, 41, 10.1186/1743-422X-3-41
Aguilar, 2006, N-glycans on Nipah virus fusion protein protect against neutralization but reduce membrane fusion and viral entry, J. Virol., 80, 4878, 10.1128/JVI.80.10.4878-4889.2006
Melanson, 2006, Addition of N-glycans in the stalk of the Newcastle disease virus HN protein blocks its interaction with the F protein and prevents fusion, J. Virol., 80, 623, 10.1128/JVI.80.2.623-633.2006
Shi, 2005, Role of N-linked glycans on bunyamwera virus glycoproteins in intracellular trafficking, protein folding, and virus infectivity, J. Virol., 79, 13725, 10.1128/JVI.79.21.13725-13734.2005
Moll, 2004, Influence of N-glycans on processing and biological activity of the nipah virus fusion protein, J. Virol., 78, 7274, 10.1128/JVI.78.13.7274-7278.2004
Lin, 2003, Differential N-linked glycosylation of human immunodeficiency virus and Ebola virus envelope glycoproteins modulates interactions with DC-SIGN and DC-SIGNR, J. Virol., 77, 1337, 10.1128/JVI.77.2.1337-1346.2003
Bossart, 2005, Receptor binding, fusion inhibition, and induction of cross-reactive neutralizing antibodies by a soluble G glycoprotein of Hendra virus, J. Virol., 79, 6690, 10.1128/JVI.79.11.6690-6702.2005
Oostra, 2006, Glycosylation of the severe acute respiratory syndrome coronavirus triple-spanning membrane proteins 3a and M, J. Virol., 80, 2326, 10.1128/JVI.80.5.2326-2336.2006
Schowalter, 2006, Characterization of human metapneumovirus F protein-promoted membrane fusion: critical roles for proteolytic processing and low pH, J. Virol., 80, 10931, 10.1128/JVI.01287-06
Cambi, 2004, Microdomains of the C-type lectin DC-SIGN are portals for virus entry into dendritic cells, J. Cell Biol., 164, 145, 10.1083/jcb.200306112
Cambi, 2003, Dual function of C-type lectin-like receptors in the immune system, Curr. Opin. Cell Biol., 15, 539, 10.1016/j.ceb.2003.08.004
Reading, 2000, Involvement of the mannose receptor in infection of macrophages by influenza virus, J. Virol., 74, 5190, 10.1128/JVI.74.11.5190-5197.2000
Nguyen, 2003, Involvement of macrophage mannose receptor in the binding and transmission of HIV by macrophages, Eur. J. Immunol., 33, 483, 10.1002/immu.200310024
Vigerust, 2005, HIV-1 Nef mediates post-translational down-regulation and redistribution of the mannose receptor, J. Leukoc. Biol., 77, 522, 10.1189/jlb.0804454
Lozach, 2003, DC-SIGN and L-SIGN are high affinity binding receptors for hepatitis C virus glycoprotein E2, J. Biol. Chem., 278, 20358, 10.1074/jbc.M301284200
Davis, 2006, The location of asparagine-linked glycans on West Nile virions controls their interactions with CD209 (DC-SIGN), J. Biol. Chem., 281, 37183, 10.1074/jbc.M605429200
Davis, 2006, West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection, J. Virol., 80, 1290, 10.1128/JVI.80.3.1290-1301.2006
Marzi, 2006, The signal peptide of the ebolavirus glycoprotein influences interaction with the cellular lectins DC-SIGN and DC-SIGNR, J. Virol., 80, 6305, 10.1128/JVI.02545-05
Marzi, 2004, DC-SIGN and DC-SIGNR interact with the glycoprotein of Marburg virus and the S protein of severe acute respiratory syndrome coronavirus, J. Virol., 78, 12090, 10.1128/JVI.78.21.12090-12095.2004
Turville, 2001, HIV gp120 receptors on human dendritic cells, Blood, 98, 2482, 10.1182/blood.V98.8.2482
Liu, 2004, CD4-independent infection of astrocytes by human immunodeficiency virus type 1: requirement for the human mannose receptor, J. Virol., 78, 4120, 10.1128/JVI.78.8.4120-4133.2004
Gramberg, 2005, LSECtin interacts with filovirus glycoproteins and the spike protein of SARS coronavirus, Virology, 340, 224, 10.1016/j.virol.2005.06.026
Reading, 1997, Collectin-mediated antiviral host defense of the lung: evidence from influenza virus infection of mice, J. Virol., 71, 8204, 10.1128/JVI.71.11.8204-8212.1997
Thielens, 2002, Interaction of C1q and mannan-binding lectin with viruses, Immunobiology, 205, 563, 10.1078/0171-2985-00155
White, 2000, Enhanced antiviral and opsonic activity of a human mannose-binding lectin and surfactant protein D chimera, J. Immunol., 165, 2108, 10.4049/jimmunol.165.4.2108
Hartshorn, 1994, Evidence for a protective role of pulmonary surfactant protein D (SP-D) against influenza A viruses, J. Clin. Invest., 94, 311, 10.1172/JCI117323
Meschi, 2005, Surfactant protein D binds to human immunodeficiency virus (HIV) envelope protein gp120 and inhibits HIV replication, J. Gen. Virol., 86, 3097, 10.1099/vir.0.80764-0
Witvrouw, 2005, Resistance of human immunodeficiency virus type 1 to the high-mannose binding agents cyanovirin N and concanavalin A, J. Virol., 79, 7777, 10.1128/JVI.79.12.7777-7784.2005
Williams, 2005, Crystal structures of the HIV-1 inhibitory cyanobacterial protein MVL free and bound to Man3GlcNAc2: structural basis for specificity and high-affinity binding to the core pentasaccharide from n-linked oligomannoside, J. Biol. Chem., 280, 29269, 10.1074/jbc.M504642200
Balzarini, 2007, Carbohydrate-binding agents efficiently prevent dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN)-directed HIV-1 transmission to T lymphocytes, Mol. Pharmacol., 71, 3, 10.1124/mol.106.030155
O’Keefe, 2003, Potent anti-influenza activity of cyanovirin-N and interactions with viral hemagglutinin, Antimicrob. Agents Chemother., 47, 2518, 10.1128/AAC.47.8.2518-2525.2003
Hawgood, 2004, Pulmonary collectins modulate strain-specific influenza a virus infection and host responses, J. Virol., 78, 8565, 10.1128/JVI.78.16.8565-8572.2004
LeVine, 2001, Surfactant protein D enhances clearance of influenza A virus from the lung in vivo, J. Immunol., 167, 5868, 10.4049/jimmunol.167.10.5868
Hartshorn, 2006, Salivary agglutinin and lung scavenger receptor cysteine-rich glycoprotein 340 have broad anti-influenza activities and interactions with surfactant protein D that vary according to donor source and sialylation, Biochem. J., 393, 545, 10.1042/BJ20050695
White, 2005, Cooperative anti-influenza activities of respiratory innate immune proteins and neuraminidase inhibitor, Am. J. Physiol. Lung Cell. Mol. Physiol., 288, L831, 10.1152/ajplung.00365.2004
Ji, 2005, Mannose binding lectin (MBL) and HIV, Mol. Immunol., 42, 145, 10.1016/j.molimm.2004.06.015
Hart, 2002, High mannose glycans and sialic acid on gp120 regulate binding of mannose-binding lectin (MBL) to HIV type 1, AIDS Res. Hum. Retroviruses, 18, 1311, 10.1089/088922202320886352
Geijtenbeek, 2000, DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells, Cell, 100, 587, 10.1016/S0092-8674(00)80694-7
Wang, 2004, DC-SIGN: binding receptors for hepatitis C virus, Chin. Med. J. (Engl.), 117, 1395