Virtual wave flume and Oscillating Water Column modeled by lattice Boltzmann method and comparison with experimental data

International Journal of Marine Energy - Tập 14 - Trang 41-51 - 2016
Yann Thorimbert1, Jonas Latt1, Lorenzo Cappietti2, Bastien Chopard1
1University of Geneva, Centre Universitaire d’Informatique, 7, route de Drize, 1227 Carouge, Switzerland
2University of Florence, Department of Civil and Environmental Engineering, Via S.Marta 3, 50139 Firenze, Italy

Tài liệu tham khảo

Clement, 2002, Wave energy in Europe: current status and perspectives, Renew. Sustain. Energy Rev., 6, 405, 10.1016/S1364-0321(02)00009-6 Vicinanza, 2011, Estimation of the wave energy in the italian offshore, J. Coastal Res., 64, 613 Vannucchi, 2012, Estimation of the offshore wave energy potential of the mediterranean sea and propagation toward a nearshore area, 17 Lopez, 2013, Review of wave energy technologies and the necessary power-equipment, Renew. Sustain. Energy Rev., 27, 413, 10.1016/j.rser.2013.07.009 Drew, 2009, A review of wave energy converter technology, vol. 223, 887 Heath, 2011, A review of oscillating water columns, Philos. Trans. Roy. Soc. A, 370, 235, 10.1098/rsta.2011.0164 Gomes, 2012, Testing of a small-scale floating OWC model in a wave flume Okuhara, 2013, Wells turbine for wave energy conversion, Open J. Fluid Dyn., 3, 36, 10.4236/ojfd.2013.32A006 Torre-Enciso, 2009, Mutriku wave power plant: from the thinking out to the reality, 319 T.J.T. Whittaker et al., The LIMPET Wave Power Project – The First Years of Operation, <http://web.sbe.hw.ac.uk/staffprofiles/bdgsa/shsg/Documents/2004sem/limpet.PDF>, online; accessed 26 July 2015 (2014). Falcão, 2010, Wave energy utilization: a review of the technologies, Renew. Sustain. Energy Rev., 14, 899, 10.1016/j.rser.2009.11.003 Iturrioz, 2014, Time-domain modeling of a fixed detached oscillating water column towards a floating multi-chamber device, Ocean Eng., 76, 65, 10.1016/j.oceaneng.2013.11.023 I. Lopez, G. Iglesias, M. Lopez, F. Castro, M. Ángel Rodŕguez, Turbine–chamber coupling in an OWC wave energy converter, Coastal Engineering Proceedings 1 (33). <https://journals.tdl.org/icce/index.php/icce/article/view/6572>. Liu, 2008, Application of numerical wave tank to OWC air chamber for wave energy conversion, 350 Senturk, 2011, Modelling the interaction between water waves and the oscillating water column wave energy device, Math. Comput. Appl., 16, 630, 10.3390/mca16030630 I. Simonetti, L. Cappietti, H.E. Safti, H. Oumeraci, 3D numerical modelling of oscillating water column wave energy conversion devices: current knowledge and OpenFOAM implementation (March 2016) (2015) 497–504. Peters, 2010, Multiscale simulation of cardiovascular flows on the IBM Bluegene/P: full heart-circulation system at red-blood cell resolution, 1 Vannucchi, 2013, Wave energy estimation in four Italian nearshore areas, vol. 8 MARINET, <http://www.fp7-marinet.eu>, online; accessed 26 July 2015. Mansard, 1980, The measurement of incident and reflected spectra using a least squares method, 154 Succi, 2001 Chopard, 2002, Cellular automata and lattice boltzmann techniques: an approach to model and simulate complex systems, Adv. Complex Syst., 5, 103, 10.1142/S0219525902000602 Chen, 1998, Lattice Boltzmann methods for fluid flows, Annu. Rev. Fluid Mech., 30, 329, 10.1146/annurev.fluid.30.1.329 Parmigiani, 2013, A lattice Boltzmann simulation of the Rhone river, Int. J. Mod. Phys. C, 24, 1340008, 10.1142/S0129183113400081 Harris, 1971 He, 1997, Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation, Phys. Rev. E, 56, 6811, 10.1103/PhysRevE.56.6811 P.J. Dellar, Bulk and shear viscosities in lattice Boltzmann equations, Phys. Rev. E 64. Bhatnagar, 1954, A model for collision processes in gases, Phys. Rev., 94, 511, 10.1103/PhysRev.94.511 Korner, 2005, Lattice Boltzmann model for free surface flow for modeling foaming, J. Stat. Phys., 121, 179, 10.1007/s10955-005-8879-8 Thürey, 2009, Stable free surface flows with the lattice Boltzmann method on adaptively coarsened grids, Comput. Vis. Sci., 12, 247, 10.1007/s00791-008-0090-4 Smagorinsky, 1963, General circulation model of the atmosphere, Mon. Weather Rev., 91, 99, 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 Hou, 1996, A lattice Boltzmann subgrid model for high Reynolds number flows, Fields Inst. Commun., 6, 151 Chopard, 1998 Palabos, <http://www.palabos.org>, online; accessed 26 July 2015. He, 1997, Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model, J. Stat. Phys., 87, 115, 10.1007/BF02181482 Kundu, 2008 Thürey, 2006, Animation of open water phenomena with coupled shallow water and free surface simulations, 157 Cengel, 2004 Sheng, 2013, Investigation to air compressibility of oscillating water column wave energy converters, vol. 8 Koirala, 2015, Numerical analysis of primary conversion efficiency of oscillating water columns with multiple chambers, Proc. Eng., 105, 586, 10.1016/j.proeng.2015.05.036