Vi sinh học ảo như một công cụ hỗ trợ đánh giá tự động/định lượng sự biểu hiện protein trong các mẫu vi mô

Springer Science and Business Media LLC - Tập 130 - Trang 447-463 - 2008
Catherine Conway1, Lynne Dobson2, Anthony O’Grady3, Elaine Kay3, Sean Costello1, Daniel O’Shea4
1SlidePath, Dublin, Ireland
2School of Biotechnology, Dublin City University, Dublin, Ireland
3Department of Histopathology, Beaumont Hospital and Royal College of Surgeons, Dublin, Ireland
4Medical Informatics Group, School of Biotechnology, Dublin City University, Dublin, Ireland

Tóm tắt

Mẫu vi mô mô (Tissue Microarrays - TMAs) tạo điều kiện cho kỹ thuật hóa miễn dịch quy mô lớn; tuy nhiên, có một số điểm nghẽn chính xuất hiện trong quá trình phân tích của chúng, đặc biệt là khi thực hiện các đánh giá thủ công dựa trên kính hiển vi. Truyền thống, việc đánh giá TMAs được thực hiện bằng cách sử dụng kính hiển vi, tại đó, kết quả được ghi chép lại hoặc đọc lớn và sau đó được nhập vào các bảng tính dạng phẳng. Quy trình này tốn nhiều công sức, dễ xảy ra sai sót và làm mất đi những lợi thế của định dạng TMAs có thể xử lý quy mô lớn. Hơn nữa, việc diễn giải các thông số cường độ nhu staining bởi con người thường rất chủ quan và do đó dễ bị biến thiên giữa các người quan sát và trong cùng một người quan sát. Sự xuất hiện của Kính hiển vi ảo đã cho phép việc xem xét các mẫu mô qua Internet. Ngoài ra, công nghệ mới này cho phép tạo ra các giải pháp phần mềm để hỗ trợ trong việc xem xét thủ công và tự động các TMAs, thông qua việc sử dụng phân tích hình ảnh hỗ trợ bằng máy tính. Có rất nhiều ứng dụng được phát triển tại các trường học và có sẵn thương mại hỗ trợ cho việc đánh giá TMAs; tính năng của các hệ thống này dao động về độ phức tạp và lĩnh vực ứng dụng. Bài đánh giá tiếp theo mô tả các hệ thống này và nêu ra các cân nhắc kỹ thuật cần được đánh giá khi quyết định về một giải pháp quy trình TMAs.

Từ khóa

#Mẫu vi mô mô #đánh giá tự động #phân tích hình ảnh #hóa miễn dịch #kính hiển vi ảo

Tài liệu tham khảo

Al Kuraya K, Simon R, Sauter G (2004) Tissue microarrays for high-throughput molecular pathology. Ann Saudi Med 24:169–174 Alphelys (2008) Spot Browser. http://www.alphelys.com/site/us/pTA_StationAnalyse.htm Aperio-Technologies (2008) Line scanning versus tile scanning. Aperio-Technologies, Inc., Vista Aperio (2008) TMALab DataSheet. http://www.aperio.com/PDF_docs/quicklinks/TMALab_II.pdf Bartlett J, Mallon E, Cooke T (2003) The clinical evaluation of HER-2 status: which test to use? J Pathol 199:411–417 Berman JJ, Edgerton ME, Friedman BA (2003) The tissue microarray data exchange specification: a community-based, open source tool for sharing tissue microarray data. BMC Med Inform Decis Mak 3:5 Braunschweig T, Chung JY, Hewitt SM (2004) Perspectives in tissue microarrays. Comb Chem High Throughput Screen 7:575–585 Brennan DJ, Rexhepaj E, O’Brien SL, Mcsherry E, O’Connor DP, Fagan A, Culhane AC, Higgins DG, Jirstrom K, Millikan RC, Landberg G, Duffy MJ, Hewitt SM, Gallagher WM (2008) Altered cytoplasmic-to-nuclear ratio of survivin is a prognostic indicator in breast cancer. Clin Cancer Res 14:2681–2689 Bubendorf L, Nocito A, Moch H, Sauter G (2001) Tissue microarray (TMA) technology: miniaturized pathology archives for high-throughput in situ studies. J Pathol 195:72–79 Camozzi C, Razvi E (2004) Tissue: microarrays: facilitating drug research. Genet Eng News 24:30–39 Camp RL, Divito KA (2005) Tissue Microarrays—automated analysis and future directions. Breast Cancer Online 8 Camp RL, Chung GG, Rimm DL (2002) Automated subcellular localization and quantification of protein expression in tissue microarrays. Nat Med 8:1323–1327 Camp RL, Dolled-Filhart M, King BL, Rimm DL (2003) Quantitative analysis of breast cancer tissue microarrays shows that both high and normal levels of HER2 expression are associated with poor outcome. Cancer Res 63:1445–1448 Camp RL, Dolled-Filhart M, Rimm DL (2004) X-tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin Cancer Res 10:7252–7259 Carmona R, Macias D, Guadix JA, Portillo V, Perez-Pomares JM, Munoz-Chapuli R (2007) A simple technique of image analysis for specific nuclear immunolocalization of proteins. J Microsc 225:96–99 Conway CM, O’Shea D, O’Brien S, Lawler DK, Dodrill GD, O’Grady A, Barrett H, Gulmann C, O’Driscoll L, Gallagher WM, Kay EW, O’Shea DG (2006) The development and validation of the Virtual Tissue Matrix, a software application that facilitates the review of tissue microarrays on line. BMC Bioinformatics 7:256 Costello SS, Johnston DJ, Dervan PA, O’Shea DG (2003) Development and evaluation of the virtual pathology slide: a new tool in telepathology. J Med Internet Res 5:e11 Cregger M, Berger AJ, Rimm DL (2006) Immunohistochemistry and quantitative analysis of protein expression. Arch Pathol Lab Med 130:1026–1030 Cross SS, Dennis T, Start RD (2002) Telepathology: current status and future prospects in diagnostic histopathology. Histopathology 41:91–109 DE MARZO AM (2003) Advancing practice, instruction, and innovation through informatics (APIII 2007) conference. http://arpa.allenpress.com/arpaonline/?request=getdocument Divito KA, Berger AJ, Camp RL, Dolled-Filhart M, Rimm DL, Kluger HM (2004) Automated quantitative analysis of tissue microarrays reveals an association between high Bcl-2 expression and improved outcome in melanoma. Cancer Res 64:8773–8777 Dodek (2007) Gradient optical illusion. http://en.wikipedia.org/wiki/Image:Gradient-optical-illusion.svg Dolled-Filhart M, Mccabe A, Giltnane J, Cregger M, Camp RL, Rimm DL (2006) Quantitative in situ analysis of beta-catenin expression in breast cancer shows decreased expression is associated with poor outcome. Cancer Res 66:5487–5494 Ellis IO, Dowsett M, Bartlett J, Walker R, Cooke T, Gullick W, Gusterson B, Mallon E, Lee PB (2000) Recommendations for HER2 testing in the UK. J Clin Pathol 53:890–892 Ellis IO, Bartlett J, Dowsett M, Humphreys S, Jasani B, Miller K, Pinder SE, Rhodes A, Walker R (2004) Best Practice No 176: updated recommendations for HER2 testing in the UK. J Clin Pathol 57:233–237 Faith DA, Isaacs WB, Morgan JD, Fedor HL, Hicks JL, Mangold LA, Walsh PC, Partin AW, Platz EA, Luo J, De Marzo AM (2004) Trefoil factor 3 overexpression in prostatic carcinoma: prognostic importance using tissue microarrays. Prostate 61:215–227 Fejzo MS, Slamon DJ (2001) Frozen tumor tissue microarray technology for analysis of tumor RNA, DNA, and proteins. Am J Pathol 159:1645–1650 Francisco JS, Moraes HP, Dias EP (2004) Evaluation of the Image-Pro Plus 4.5 software for automatic counting of labeled nuclei by PCNA immunohistochemistry. Braz Oral Res 18:100–104 Genetix (2008) http://www.genetix.com/xhtml/benefits.aspx?pid=29&pcid=1 Gokhale S, Rosen D, Sneige N, Diaz LK, Resetkova E, Sahin A, Liu J, Albarracin CT (2007) Assessment of two automated imaging systems in evaluating estrogen receptor status in breast carcinoma. Appl Immunohistochem Mol Morphol 15:451–455 Habib I (2005) Automated microscope slide analysis in pathology. Detection technologies, IVD Technology. http://www.devicelink.com/ivdt/archive/05/05/001.html Harigopal M, Berger AJ, Camp RL, Rimm DL, Kluger HM (2005) Automated quantitative analysis of E-cadherin expression in lymph node metastases is predictive of survival in invasive ductal breast cancer. Clin Cancer Res 11:4083–4089 Hewitt SM (2006) The application of tissue microarrays in the validation of microarray results. Methods Enzymol 410:400–415 Hicks DG, Tubbs RR (2005) Assessment of the HER2 status in breast cancer by fluorescence in situ hybridization: a technical review with interpretive guidelines. Hum Pathol 36:250–261 Hoos A, Cordon-Cardo C (2001) Tissue microarray profiling of cancer specimens and cell lines: opportunities and limitations. Lab Invest 81:1331–1338 Hsi ED, Tubbs RR (2004) Guidelines for HER2 testing in the UK. J Clin Pathol 57:241–242 Johansson AC, Visse E, Widegren B, Sjogren HO, Siesjo P (2001) Computerized image analysis as a tool to quantify infiltrating leukocytes: a comparison between high- and low-magnification images. J Histochem Cytochem 49:1073–1079 Joshi AS, Sharangpani GM, Porter K, Keyhani S, Morrison C, Basu AS, Gholap GA, Gholap AS, Barsky SH (2007) Semi-automated imaging system to quantitate Her-2/neu membrane receptor immunoreactivity in human breast cancer. Cytometry A 71:273–285 Kallioniaemi OP, Wagner U, Kononen J, Sauter G (2001) Tissue microarray technology for high-throughput molecular profiling of cancer. Hum Mol Genet 10:657–662 Kay EW, Walsh CJ, Cassidy M, Curran B, Leader M (1994) C-erbB-2 immunostaining: problems with interpretation. J Clin Pathol 47:816–822 Kay E, O’Grady A, Morgan JM, Wozniak S, Jasani B (2004) Use of tissue microarray for interlaboratory validation of HER2 immunocytochemical and FISH testing. J Clin Pathol 57:1140–1144 Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S, Torhorst J, Mihatsch MJ, Sauter G, Kallioniemi OP (1998) Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 4:844–847 Lacroix-Triki M, Mathoulin-Pelissier S, Ghnassia JP, Macgrogan G, Vincent-Salomon A, Brouste V, Mathieu MC, Roger P, Bibeau F, Jacquemier J, Penault-Llorca F, Arnould L (2006) High inter-observer agreement in immunohistochemical evaluation of HER-2/neu expression in breast cancer: a multicentre GEFPICS study. Eur J Cancer 42:2946–2953 Leys CM, Nomura S, Lafleur BJ, Ferrone S, Kaminishi M, Montgomery E, Goldenring JR (2007) Expression and prognostic significance of prothymosin-alpha and ERp57 in human gastric cancer. Surgery 141:41–50 Liu CL, Prapong W, Natkunam Y, Alizadeh A, Montgomery K, Gilks CB, van de Rijn M (2002) Software tools for high-throughput analysis and archiving of immunohistochemistry staining data obtained with tissue microarrays. Am J Pathol 161:1557–1565 Lockal (2007) Illustration to demonstrate the Bezold effect. http://en.wikipedia.org/wiki/Image:Bezold_Effect.svg Macbeath G (2002) Protein microarrays and proteomics. Nat Genet 32(Suppl):526–532 Manley S, Mucci NR, de Marzo AM, Rubin MA (2001) Relational database structure to manage high-density tissue microarray data and images for pathology studies focusing on clinical outcome: the prostate specialized program of research excellence model. Am J Pathol 159:837–843 Messersmith W, Oppenheimer D, Peralba J, Sebastiani V, Amador M, Jimeno A, Embuscado E, Hidalgo M, Iacobuzio-Donahue C (2005) Assessment of Epidermal Growth Factor Receptor (EGFR) signaling in paired colorectal cancer and normal colon tissue samples using computer-aided immunohistochemical analysis. Cancer Biol Ther 4:1381–1386 Milanes-Yearsley M, Hammond ME, Pajak TF, Cooper JS, Chang C, Griffin T, Nelson D, Laramore G, Pilepich M (2002) Tissue micro-array: a cost and time-effective method for correlative studies by regional and national cancer study groups. Mod Pathol 15:1366–1373 Moch H, Kononen T, Kallioniemi OP, Sauter G (2001) Tissue microarrays: what will they bring to molecular and anatomic pathology? Adv Anat Pathol 8:14–20 Perner S, Hofer MD, Kim R, Shah RB, Li H, Moller P, Hautmann RE, Gschwend JE, Kuefer R, Rubin MA (2007) Prostate-specific membrane antigen expression as a predictor of prostate cancer progression. Hum Pathol 38:696–701 Plodowski A, Jackson SR (2001) Vision: getting to grips with the Ebbinghaus illusion. Curr Biol 11:R304–R306 Rojo MG, Garcia GB, Mateos CP, Garcia JG, Vicente MC (2006) Critical comparison of 31 commercially available digital slide systems in pathology. Int J Surg Pathol 14:285–305 Schnitt SJ, Connolly JL, Tavassoli FA, Fechner RE, Kempson RL, Gelman R, Page DL (1992) Interobserver reproducibility in the diagnosis of ductal proliferative breast lesions using standardized criteria. Am J Surg Pathol 16:1133–1143 Sharpe (2008) OPT Microscopy. http://genex.hgu.mrc.ac.uk/OPT_Microscopy/optwebsite/introduction/introduction/introduction.htm Shergill IS, Shergill NK, Arya M, Patel HR (2004) Tissue microarrays: a current medical research tool. Curr Med Res Opin 20:707–712 Simon R, Sauter G (2002) Tissue microarrays for miniaturized high-throughput molecular profiling of tumors. Exp Hematol 30:1365–1372 SlidePath (2008) Invent, Dublin City University, Dublin 9, Ireland. http://www.slidepath.com/ Sonka M et al. (1993) Image processing analysis, and machine vision. Chapman & Hall Computing, London Stromberg S, Bjorklund MG, Asplund C, Skollermo A, Persson A, Wester K, Kampf C, Nilsson P, Andersson AC, Uhlen M, Kononen J, Ponten F, Asplund A (2007) A high-throughput strategy for protein profiling in cell microarrays using automated image analysis. Proteomics 7:2142–2150 Tawfik OW, Kimler BF, Davis M, Donahue JK, Persons DL, Fan F, Hagemeister S, Thomas P, Connor C, Jewell W, Fabian CJ (2006) Comparison of immunohistochemistry by automated cellular imaging system (ACIS) versus fluorescence in-situ hybridization in the evaluation of HER-2/neu expression in primary breast carcinoma. Histopathology 48:258–267 Torhorst J, Bucher C, Kononen J, Haas P, Zuber M, Kochli OR, Mross F, Dieterich H, Moch H, Mihatsch M, Kallioniemi OP, Sauter G (2001) Tissue microarrays for rapid linking of molecular changes to clinical endpoints. Am J Pathol 159:2249–2256 Tubbs RR, Swain E, Pettay JD, Hicks DG (2007) An approach to the validation of novel molecular markers of breast cancer via TMA-based FISH scanning. J Mol Histol 38:141–150 Turbin DA, Leung S, Cheang MC, Kennecke HA, Montgomery KD, Mckinney S, Treaba DO, Boyd N, Goldstein LC, Badve S, Gown AM, van de Rijn M, Nielsen TO, Gilks CB, Huntsman DG (2007) Automated quantitative analysis of estrogen receptor expression in breast carcinoma does not differ from expert pathologist scoring: a tissue microarray study of 3,484 cases. Breast Cancer Res Treat Tzankov A, Went P, Zimpfer A, Dirnhofer S (2005) Tissue microarray technology: principles, pitfalls and perspectives—lessons learned from hematological malignancies. Exp Gerontol 40:737–744 Wang H, Wang H, Zhang W, Fuller GN (2002) Tissue microarrays: applications in neuropathology research, diagnosis, and education. Brain Pathol 12:95–107 Wang S, Saboorian MH, Frenkel EP, Haley BB, Siddiqui MT, Gokaslan S, Wians FH Jr, Hynan L, Ashfaq R (2001) Assessment of HER-2/neu status in breast cancer. Automated Cellular Imaging System (ACIS)-assisted quantitation of immunohistochemical assay achieves high accuracy in comparison with fluorescence in situ hybridization assay as the standard. Am J Clin Pathol 116:495–503 Watanabe I (2007). Laboratory of Isao Watanabe, Visual Illusions. http://www.let.kumamoto-u.ac.jp/ihs/hum/psychology/watanabe/Watanabe-E/Illus-E/index.html Weaver DL, Krag DN, Manna EA, Ashikaga T, Harlow SP, Bauer KD (2003) Comparison of pathologist-detected and automated computer-assisted image analysis detected sentinel lymph node micrometastases in breast cancer. Mod Pathol 16:1159–1163 Wei B, Bu H, Zhu CR, Guo LX, Chen HJ, Zhao C, Zhang P, Chen DY, Tang Y, Jiang Y (2004) Interobserver reproducibility in the pathologic diagnosis of borderline ductal proliferative breast diseases. Sichuan Da Xue Xue Bao Yi Xue Ban 35:849–853 Zerkowski MP, Camp RL, Burtness BA, Rimm DL, Chung GG (2007) Quantitative analysis of breast cancer tissue microarrays shows high cox-2 expression is associated with poor outcome. Cancer Invest 25:19–26 Zhang L, Wang C (2006) F-box protein Skp2: a novel transcriptional target of E2F. Oncogene 25:2615–2627 Zu Y, Steinberg SM, Campo E, Hans CP, Weisenburger DD, Braziel RM, Delabie J, Gascoyne RD, Muller-Hermlink K, Pittaluga S, Raffeld M, Chan WC, Jaffe ES (2005) Validation of tissue microarray immunohistochemistry staining and interpretation in diffuse large B-cell lymphoma. Leuk Lymphoma 46:693–701