Virtual design on the heat pump refrigeration cycle: challenges and approaches
Tóm tắt
Từ khóa
Tài liệu tham khảo
Xia, L., Ma, Z., Kokogiannakis, G., Wang, Z., & Wang, S. (2018). A model-based design optimization strategy for ground source heat pump systems with integrated photovoltaic thermal collectors. Applied Energy, 214, 178–190. https://www.sciencedirect.com/science/article/abs/pii/S0306261918300758.
Park, N., Park, H. W., Kim, S. K., Jin, Z. Q., Kwon, H. M., Cho, J. M., Hwang, Y. J. & Oh, S.K. (2022) On the feasibility of model-based design and optimal control of industrial air-conditioning system. International Refrigeration and Air Conditioning Conference. Paper 2415, https://docs.lib.purdue.edu/iracc/2415
Hwang, Y.J., Lee, J.W., Kim ,W.S., Lee, K.W., Seong, Y.H., Park, M.S. and Oh, S.K.(2023) The Dynamic behaviors on Drying Performance of Heat Pump Dryer using a Reduced Order Model, 14th IEA Heat Pump Conference 0262, May 15–18, 2023, Chicago, Illinois. https://etkhpcorderapi.extweb.sp.se/api/file/2535
Sivakumar, P., Vinod, B., Sandhya, D. & Poorani Nithiavallee, S. (2015). Model Based Design Approach in Automotive Software and Systems. International Journal of Applied Engineering Research, 10(11), 29857–29865. https://www.ripublication.com/ijaerdoi/2015/ijaerv10n11_211.pdf
Dassault 3DS (2023). https://www.3ds.com/products-services/catia/products/catia-magic/
Costa Rocha, P. A., Johnston, S. J., Oliveira Santos, V., Aliabadi, A. A., Thé, J. V. G., & Gharabaghi, B. (2023). Deep neural network modeling for CFD simulations: Benchmarking the Fourier neural operator on the lid-driven cavity case. Applied Science, 13, 3165. https://doi.org/10.3390/app1305316
Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, Journal of Compuational. Physics, 378, 686–707. https://www.sciencedirect.com/science/article/abs/pii/S0021999118307125.
Zivi, S. M. (1964). Estimation of steady-state steam void draction by means of the principle of minimum entropy production”. Transactions ASME, Journal of Heat Transfer, series C, 86, 247–252. https://asmedigitalcollection.asme.org/heattransfer/article-abstract/86/2/247/413906/Estimation-of-Steady-State-Steam-Void-Fraction-by?redirectedFrom=fulltext.
Müller-Steinhagen, H., & Heck, K. (1986). A simple friction pressure drop correlation for two-phase flow in pipes. Chemical Engineering and Processing: Process Intensification, 20(6), 297–308. https://www.sciencedirect.com/science/article/abs/pii/0255270186800083.
Shah, M. M. (2009). An improved and extended general correlation for heat transfer during condensation in plain tubes. HVAC & R Research, 15(5), 889–913. https://www.tandfonline.com/doi/abs/10.1080/10789669.2009.10390871.
Gungor, K. E., & Winterton, R. H. S. (1987). Simplified general correlation for saturated flow boiling and comparisons with data. Chemical Engineering Research and Design., 65, 148–156. https://scienceon.kisti.re.kr/srch/selectPORSrchArticle.do?cn=NART17925655.
Domanski, P.A. (1986). Modeling of a heat pump charged with a non-azetropic refrigerant mixture, NBS (National Bureau of Science) Technical Note 1218. https://www.nist.gov/publications/modeling-heat-pump-charged-non-azeotropic-refrigerant-mixture
Qiao, H., Aute, V., & Rademacher, R. (2015). Transient modeling of a flash tank vapor injection heat pump system-Part I: Model development. International Journal of Refrigeration, 49, 169–182. https://www.sciencedirect.com/science/article/abs/pii/S0140700714001820.
Qiao, H., Aute, V., & Rademacher, R. (2015). Transient modeling of a flash tank vapor injection heat pump system-Part II: Simulation results and experimental validation. International Journal of Refrigeration, 49, 183–194. https://www.sciencedirect.com/science/article/abs/pii/S0140700714001819.
MacArthur, J. W., & Grald, E. W. (1989). Unsteady compressible two-phase flow model for predicting cyclic heat pump performance and a comparison with experimental data. International Journal of Refrigeration, 12(1), 29–41. https://www.sciencedirect.com/science/article/abs/pii/0140700789900091.
Park, N., Shin J. S. & Chung B. Y. (2013). A new dynamic heat pump simulation model with variable speed compressors under frosting conditions, Proc. 2013 Int. Conf. Compressors and Their Systems, City College of London, UK., 2013. https://koreascience.kr/article/JAKO201511742734683.page
Park, N., Shin, J. S., Chung, B. Y., & Kim, B. S. (2015). A New Dynamic VRF Heat Pump Simulation including Frosting and Defrosting Models. Transactions of the KSME C: Technology and Education, 3(1), 1–13. https://koreascience.kr/article/JAKO201511742734683.page.
McKinley, T. L., & Alleyne, A. G. (2008). An advanced nonlinear switched heat exchanger model for vapor compression cycles using the moving-boundary method. International Journal of Refrigeration, 31, 1253–1264. https://www.sciencedirect.com/science/article/abs/pii/S0140700708000327.
Li, B., & Alleyne, A. G. (2010). A dynamic model of a vapor compression cycle with shut-down and start-up operations. International Journal of Refrigeration, 33, 538–552. https://www.sciencedirect.com/science/article/abs/pii/S014070070900212.
Shin, Y. G., Kim, J. H., & Yoo, B. J. (2013). Dynamic modeling and simulation of a hybrid heat pump, Korean Journal of Air-Conditioning and Refrigeration. Engineering, 25(7), 406–412. https://koreascience.kr/article/JAKO201324136582751.page.
Greenbaum, A. (1997). Iterative methods for solving linear equations, Society for Industrial Applied Mathematics, Philadelphia. https://epubs.siam.org/doi/book/10.1137/1.9781611970937
Petzold, L.R. (1982). A Description of DASSL: A differential algebraic system solver, Sandia Report SAND082–8637. http://www.osti.gov/servlets/purl/5882821
Elmqvist, H., Mattson, S.E. & Otter, M. (1998). Modelica – The new object-oriented modeling language, The 12th European Simulation Multi-conference, ESM98, June 16–19, 1998, Manchester, UK. https://modelica.org/publications/papers/esm98mod.pdf
Fritzson, P., Pop, A., Abdelhak, K., Asghar, A., Bachmann, B., Braun, W., Bouskela, D., Braun, R., Buffoni, L., Casella, F., Castr, R., Franke, R., Fritzson, D., Gebremedhin, M., Heuermann, A., Lie, B., Mengist, A., Mikelsons, M., Moudgalya, K., … Ostlund, P. (2020). The OpenModelica Integrated Environment for Modeling, Simulation, and Model-Based Development. Modeling, Identification and Control, 41(4), 241–285. https://www.mic-journal.no/PDF/2020/MIC-2020-4-1.pdf.
Dempsey, M. (2006). Dymola for Multi-Engineering Modeling and Simulation, 2006 IEEE Vehicle Power and Propulsion Conference, 6–8 Sept. 2006, Windsor, UK. https://ieeexplore.ieee.org/document/4211322
Halicioglu, R., Dulger, L. C., & Bozdana, A. T. (2014). Modeling and Simulation Based on Matlab/Simulink: A Press Mechanism. Journal of Physics: Conference Series, 490, 012052. https://www.researchgate.net/publication/263031546_Modelling_and_Simulation_Based_on_MatlabSimulink_A_Press_Mechanism.
Park, C., Cho, H., Lee, Y., & Kim, Y. (2007). Mass flow characteristics and empirical modeling of R22 and R410A flowing through electronic expansion valves. International Journal of Refrigeration, 30(8), 1410–1407. https://www.sciencedirect.com/science/article/abs/pii/S0140700707000588.
Jin, Z., Park, N., Lee, B. H., Hwang, Y. J., Chin, S. & Oh, S. (2022). A white-box modelling methodology for electronic expansion valve by considering choked flow”, International Refrigeration and Air Conditioning Conference, Paper 2416, https://docs.lib.purdue.edu/iracc/2416
Mathison, M.M., Braun, J.E., Groll, E. A. (2008). Modeling and Testing of a Two-Stage Rotary Compressor, International Compressor Engineering Conference, Paper 1892. https://docs.lib.purdue.edu/icec/1892
Chen, Y., Halm, N. P., Groll, E. A., & Braun, J. E. (2002). Mathematical modeling of scroll compressors-part I: compression process modeling. International Journal of Refrigeration, 25(6), 731–750. https://www.sciencedirect.com/science/article/abs/pii/S0140700701000718.
Zhuang, D., Gan, V. J. L., Tekler, Z. D., Chong, A., Tian, S., & Shi, X. (2023). Data-driven predictive control for smart HVAC system in IoT-integrated buildings with time-series forecasting and reinforcement learning. Applied Energy, 338, 120936. https://www.sciencedirect.com/science/article/abs/pii/S0306261923003008.
Lee, G., Noh, Y., Kang, Y. J., Kim, N., Park, N., Oh, B., & Choi, G. (2023). Digital Twin Model Calibration of HVAC System Using Adaptive Domain Nelder-Mead Method, to appear in Energy. https://ssrn.com/abstract=4499569.
