Virology, Epidemiology, Pathogenesis, and Control of COVID-19

Viruses - Tập 12 Số 4 - Trang 372
Yuefei Jin1, Haiyan Yang1, Wangquan Ji1, Weidong Wu2, Shuaiyin Chen1, Wei Zhang1,3, Guangcai Duan1
1Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
2School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
3Department of Immunology, Duke University Medical Center, Durham, NC 27710 USA

Tóm tắt

The outbreak of emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19) in China has been brought to global attention and declared a pandemic by the World Health Organization (WHO) on March 11, 2020. Scientific advancements since the pandemic of severe acute respiratory syndrome (SARS) in 2002~2003 and Middle East respiratory syndrome (MERS) in 2012 have accelerated our understanding of the epidemiology and pathogenesis of SARS-CoV-2 and the development of therapeutics to treat viral infection. As no specific therapeutics and vaccines are available for disease control, the epidemic of COVID-19 is posing a great threat for global public health. To provide a comprehensive summary to public health authorities and potential readers worldwide, we detail the present understanding of COVID-19 and introduce the current state of development of measures in this review.

Từ khóa


Tài liệu tham khảo

Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., Ren, R., Leung, K.S.M., Lau, E.H.Y., and Wong, J.Y. (2020). Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. N. Engl. J. Med.

Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., and Lu, R. (2020). A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med.

World Health Organization Press Conference (2020, February 11). The World Health Organization (WHO) Has Officially Named the Disease Caused by the Novel Coronavirus as COVID-19. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019.

Gorbalenya, A.E., Baker, S.C., Baric, R.S., de Groot, R.J., Drosten, C., Gulyaeva, A.A., Haagmans, B.L., Lauber, C., Leontovich, A.M., and Neuman, B.W. (2020). Severe acute respiratory syndrome-related coronavirus: The species and its viruses—A statement of the Coronavirus Study Group. bioRxiv.

Huang, 2020, Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet (Lond. Engl.), 395, 497, 10.1016/S0140-6736(20)30183-5

Xiong, C., Jiang, L., Chen, Y., and Jiang, Q. (2020). Evolution and variation of 2019-novel coronavirus. bioRxiv.

Yu, W., Tang, G., Zhang, L., and Corlett, R.T. (2020). Decoding evolution and transmissions of novel pneumonia coronavirus using the whole genomic data. ChinaXiv.

Zhou, P., Yang, X.L., Wang, X.G., Hu, B., Zhang, L., Zhang, W., Si, H.R., Zhu, Y., Li, B., and Huang, C.L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 1–4.

Weiss, 2011, Coronavirus pathogenesis, Adv. Virus Res., 81, 85, 10.1016/B978-0-12-385885-6.00009-2

Tripp, R.A., and Tompkins, S.M. (2018). Host Factors in Coronavirus Replication. Roles of Host Gene and Non-Coding RNA Expression in Virus Infection, Springer International Publishing.

Lu, 2020, Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding, Lancet (Lond. Engl.), 395, 565, 10.1016/S0140-6736(20)30251-8

Wu, F., Zhao, S., Yu, B., Chen, Y.-M., Wang, W., Hu, Y., Song, Z.-G., Tao, Z.-W., Tian, J.-H., and Pei, Y.-Y. (2020). Complete genome characterisation of a novel coronavirus associated with severe human respiratory disease in Wuhan, China. bioRxiv.

(2020, March 26). National Microbiology Data Center. Available online: http://nmdc.cn/coronavirus.

General Office of National Health Commission, and General Office of National Administration of Traditional Chinese Medicine (2020, February 20). Diagnostic and treatment protocol for Novel Coronavirus Pneumonia, Available online: http://www.nhc.gov.cn/yzygj/s7653p/202002/8334a8326dd94d329df351d7da8aefc2.shtml:.

Van Doremalen, N., Bushmaker, T., Morris, D.H., Holbrook, M.G., Gamble, A., Williamson, B.N., Tamin, A., Harcourt, J.L., Thornburg, N.J., and Gerber, S.I. (2020). Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med.

Li, 2003, Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus, Nature, 426, 450, 10.1038/nature02145

Donoghue, 2000, A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9, Circ. Res., 87, E1, 10.1161/01.RES.87.5.e1

Li, 2016, Structure, Function, and Evolution of Coronavirus Spike Proteins, Annu. Rev. Virol., 3, 237, 10.1146/annurev-virology-110615-042301

Wrapp, D., Wang, N., Corbett, K.S., Goldsmith, J.A., Hsieh, C.-L., Abiona, O., Graham, B.S., and McLellan, J.S. (2020). Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation. bioRxiv.

Zhou, Q., Yan, R., Zhang, Y., Li, Y., and Xia, L. (2020). Structure of dimeric full-length human ACE2 in complex with B0AT1. bioRxiv.

Vijaykrishna, 2007, Evolutionary insights into the ecology of coronaviruses, J. Virol., 81, 4012, 10.1128/JVI.02605-06

Corman, 2018, Hosts and Sources of Endemic Human Coronaviruses, Adv. Virus Res., 100, 163, 10.1016/bs.aivir.2018.01.001

Ge, 2013, Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor, Nature, 503, 535, 10.1038/nature12711

Lau, 2005, Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats, Proc. Natl. Acad. Sci. USA, 102, 14040, 10.1073/pnas.0506735102

Lam, T.T.-Y., Shum, M.H.-H., Zhu, H.-C., Tong, Y.-G., Ni, X.-B., Liao, Y.-S., Wei, W., Cheung, W.Y.-M., Li, W.-J., and Li, L.-F. (2020). Identification of 2019-nCoV related coronaviruses in Malayan pangolins in southern China. bioRxiv.

Tang, X., Wu, C., Li, X., Song, Y., Yao, X., Wu, X., Duan, Y., Zhang, H., Wang, Y., and Qian, Z. (2020). On the origin and continuing evolution of SARS-CoV-2. Natl. Sci. Rev.

Hoehl, S., Berger, A., Kortenbusch, M., Cinatl, J., Bojkova, D., Rabenau, H., Behrens, P., Böddinghaus, B., Götsch, U., and Naujoks, F. (2020). Evidence of SARS-CoV-2 Infection in Returning Travelers from Wuhan, China. N. Engl. J. Med.

Lan, L., Xu, D., Ye, G., Xia, C., Wang, S., Li, Y., and Xu, H. (2020). Positive RT-PCR Test Results in Patients Recovered From COVID-19. JAMA.

Novel Coronavirus Pneumonia Emergency Response Epidemiology Team (2020). The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Zhonghualiuxingbingxuezazhi, 41, 145–151.

Lu, X., Zhang, L., Du, H., Zhang, J., Li, Y.Y., Qu, J., Zhang, W., Wang, Y., Bao, S., and Li, Y. (2020). SARS-CoV-2 Infection in Children. N. Engl. J. Med.

Yang, Y., Lu, Q., Liu, M., Wang, Y., Zhang, A., Jalali, N., Dean, N., Longini, I., Halloran, M.E., and Xu, B. (2020). Epidemiological and clinical features of the 2019 novel coronavirus outbreak in China. medRxiv.

National Health Commission of People’s Republic of China (2020, February 13). An Update of Novel Coronavirus Pneumonia Outbreak as of 24:00 on February 12, Available online: http://www.nhc.gov.cn/xcs/yqtb/202002/26fb16805f024382bff1de80c918368f.shtml.

National Health Commission of People’s Republic of China (2020, February 26). An Update of Novel Coronavirus Pneumonia Outbreak as of 24:00 on February 25, Available online: http://www.nhc.gov.cn/xcs/yqtb/202002/741ce06130284a77bfbf699483c0fb60.shtml.

National Health Commission of People’s Republic of China (2020, March 24). An Update of Novel Coronavirus Pneumonia Outbreak as of 24:00 on March 23, Available online: http://www.nhc.gov.cn/xcs/yqtb/202003/e6c12d0c2cf04474944187f4088dc021.shtml.

World Health Organization (2020, March 24). Available online: https://www.who.int/csr/sars/en/.

World Health Organization (2020, March 23). Available online: https://www.who.int/emergencies/mers-cov/en/.

World Health Organization (2020, March 23). Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/.

World Health Organization (2020, March 23). Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public/myth-busters.

Liang, W., Guan, W., Chen, R., Wang, W., Li, J., Xu, K., Li, C., Ai, Q., Lu, W., and Liang, H. (2020). Cancer patients in SARS-CoV-2 infection: A nationwide analysis in China. LancetOncol.

Zou, X., Chen, K., Zou, J., Han, P., Hao, J., and Han, Z. (2020). The single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to Wuhan 2019-nCoV infection. Front. Med., 1–8.

Jia, X., Yin, C., Lu, S., Chen, Y., Liu, Q., Bai, J., and Lu, Y. (2020). Two Things about COVID-19 Might Need Attention. Preprints.

National Health Commission, Ministry of Human Resources and Social Security, and Ministry of Finance (2020, February 21). Measures to Improve Working Conditions of and Care for Physical and Mental Health of Healthcare Workers, Available online: http://www.gov.cn/xinwen/2020-02/11/content_5477476.htm.

China Food and Drug Administration (2020, February 23). China Food and Drug Administration Emergency Approval of New Coronavirus Nucleic Acid Detection Reagents, Available online: http://www.nmpa.gov.cn/WS04/CL2056/374264.html.

Daily, H. (2020, February 16). Available online: https://baijiahao.baidu.com/s?id=1658653081676286071&wfr=spider&for=pc:.

Nankai University News Network (2020, February 15). Available online: http://news.nankai.edu.cn/ywsd/system/2020/02/15/030037569.shtml:.

Xiamen University News Network (2020, February 24). Xiamen University and Shenzhen Third Hospital Successfully Developed a Novel Coronavirus Antibody Detection kit, Which Can Improve the Clinical Diagnosis, Available online: http://www.most.gov.cn/dfkj/fj/zxdt/202002/t20200224_151881.htm:.

Myhrvold, 2018, Field-deployable viral diagnostics using CRISPR-Cas13, Science, 360, 444, 10.1126/science.aas8836

Kanne, J.P. (2020). Chest CT Findings in 2019 Novel Coronavirus (2019-nCoV) Infections from Wuhan, China: Key Points for the Radiologist. Radiology, 200241.

Wang, S., Kang, B., Ma, J., Zeng, X., Xiao, M., Guo, J., Cai, M., Yang, J., Li, Y., and Meng, X. (2020). A deep learning algorithm using CT images to screen for Corona Virus Disease (COVID-19). medRxiv.

Xiao, F., Tang, M., Zheng, X., Li, C., He, J., Hong, Z., Huang, S., Zhang, Z., Lin, X., and Fang, Z. (2020). Evidence for gastrointestinal infection of SARS-CoV-2. medRxiv.

Cheng, Y., Luo, R., Wang, K., Zhang, M., Wang, Z., Dong, L., Li, J., Yao, Y., Ge, S., and Xu, G. (2020). Kidney impairment is associated with in-hospital death of COVID-19 patients. medRxiv.

Guan, 2020, Exploring the mechanism of liver enzyme abnormalities in patients with novel coronavirus-infected pneumonia, Chin. J. Hepatol., 28, E002

Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., Wang, B., Xiang, H., Cheng, Z., and Xiong, Y. (2020). Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA.

Fan, C., Li, K., Ding, Y., Lu, W.L., and Wang, J. (2020). ACE2 Expression in Kidney and Testis May Cause Kidney and Testis Damage After 2019-nCoV Infection. medRxiv.

Xu, Z., Shi, L., Wang, Y., Zhang, J., Huang, L., Zhang, C., Liu, S., Zhao, P., Liu, H., and Zhu, L. (2020). Pathological findings of COVID-19 associated with acuterespiratory distress syndrome. Lancet Respir. Med.

Ding, 2003, The clinical pathology of severe acute respiratory syndrome (SARS): A report from China, J. Pathol., 200, 282, 10.1002/path.1440

Ng, 2016, Clinicopathologic, Immunohistochemical, and Ultrastructural Findings of a Fatal Case of Middle East Respiratory Syndrome Coronavirus Infection in the United Arab Emirates, April 2014, Am. J. Pathol., 186, 652, 10.1016/j.ajpath.2015.10.024

Liu, 2020, Anatomy of a COVID-19 Death Corpse System, J. Forensic Med., 36, 21

Thompson, 2017, Acute Respiratory Distress Syndrome, N. Engl. J. Med., 377, 562, 10.1056/NEJMra1608077

Meyer, 2013, Genetic heterogeneity and risk of acute respiratory distress syndrome, Semin. Respir. Crit. Care Med., 34, 459, 10.1055/s-0033-1351121

Fu, Y., Cheng, Y., and Wu, Y. (2020). Understanding SARS-CoV-2-Mediated Inflammatory Responses: From Mechanisms to Potential Therapeutic Tools. Virol. Sin.

Gu, 2005, Multiple organ infection and the pathogenesis of SARS, J. Exp. Med., 202, 415, 10.1084/jem.20050828

Yang, M. (2020). Cell Pyroptosis, a Potential Pathogenic Mechanism of 2019-nCoV Infection. SSRN.

Imai, 2008, The discovery of angiotensin-converting enzyme 2 and its role in acute lung injury in mice, Exp. Physiol., 93, 543, 10.1113/expphysiol.2007.040048

Takada, 2003, Antibody-dependent enhancement of viral infection: Molecular mechanisms and in vivo implications, Rev. Med. Virol., 13, 387, 10.1002/rmv.405

Scagnolari, 2004, Increased sensitivity of SARS-coronavirus to a combination of human type I and type II interferons, Antivir. Ther., 9, 1003, 10.1177/135965350400900618

Chen, 2004, In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds, J. Clin. Virol. Off. Publ. Pan. Am. Soc. Clin. Virol., 31, 69, 10.1016/j.jcv.2004.03.003

Morgenstern, 2005, Ribavirin and interferon-beta synergistically inhibit SARS-associated coronavirus replication in animal and human cell lines, Biochem. Biophys. Res. Commun., 326, 905, 10.1016/j.bbrc.2004.11.128

Wenzel, 2003, Managing SARS amidst uncertainty, N. Engl. J. Med., 348, 1947, 10.1056/NEJMp030072

Chu, 2004, Role of lopinavir/ritonavir in the treatment of SARS: Initial virological and clinical findings, Thorax, 59, 252, 10.1136/thorax.2003.012658

Kim, 2016, Combination therapy with lopinavir/ritonavir, ribavirin and interferon-alpha for Middle East respiratory syndrome, Antivir. Ther., 21, 455, 10.3851/IMP3002

Agostini, M.L., Andres, E.L., Sims, A.C., Graham, R.L., Sheahan, T.P., Lu, X., Smith, E.C., Case, J.B., Feng, J.Y., and Jordan, R. (2018). Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease. MBIO, 9.

Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., Shi, Z., Hu, Z., Zhong, W., and Xiao, G. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res.

Yamamoto, 2004, HIV protease inhibitor nelfinavir inhibits replication of SARS-associated coronavirus, Biochem. Biophys. Res. Commun., 318, 719, 10.1016/j.bbrc.2004.04.083

Khamitov, 2008, Antiviral activity of arbidol and its derivatives against the pathogen of severe acute respiratory syndrome in the cell cultures, Vopr. Virusol., 53, 9

Savarino, 2003, Effects of chloroquine on viral infections: An old drug against today’s diseases?, Lancet Infect. Dis., 3, 722, 10.1016/S1473-3099(03)00806-5

Li, 2020, Potential antiviral therapeutics for 2019 Novel Coronavirus, Chin. J. Tuberc. Respir. Dis., 43, E002

Duan, 2005, A human SARS-CoV neutralizing antibody against epitope on S2 protein, Biochem. Biophys. Res. Commun., 333, 186, 10.1016/j.bbrc.2005.05.089

Leng, 2020, Transplantation of ACE2- mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia, Aging Dis., 11, 216, 10.14336/AD.2020.0228

Zhang, D., Wu, K., Zhang, X., Deng, S., and Peng, B. (2020). In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. J. Integr. Med.

Sun, C., Chen, L., Yang, J., Luo, C., Zhang, Y., Li, J., Yang, J., Zhang, J., and Xie, L. (2020). SARS-CoV-2 and SARS-CoV Spike-RBD Structure and Receptor Binding Comparison and Potential Implications on Neutralizing Antibody and Vaccine Development. bioRxiv.

Abdelmageed, M.I., Abdelmoneim, A.H., Mustafa, M.I., Elfadol, N.M., Murshed, N.S., Shantier, S.W., and Makhawi, A.M. (2020). Design of multi epitope-based peptide vaccine against E protein of human 2019-nCoV: An immunoinformatics approach. bioRxiv.

NhuThao, T.T., Labroussaa, F., Ebert, N., V’kovski, P., Stalder, H., Portmann, J., Kelly, J., Steiner, S., Holwerda, M., and Kratzel, A. (2020). Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform. bioRxiv.

Bao, L., Deng, W., Huang, B., Gao, H., Liu, J., Ren, L., Wei, Q., Yu, P., Xu, Y., and Qi, F. (2020). The Pathogenicity of SARS-CoV-2 in hACE2 Transgenic Mice. bioRxiv.

Ministry of National Defense of the People’s Republic of China (2020, March 17). The Military Successfully Developed a Recombinant SARS-CoV-2 Vaccine, Available online: http://www.mod.gov.cn/topnews/2020-03/17/content_4862066.htm:.

(2020, March 23). American Moderna Vaccine enters Clinical Trial. Available online: https://www.modernatx.com/modernas-work-potential-vaccine-against-covid-19.