Vibrations of Elastic Strings: Mathematical Aspects, Part One
Tóm tắt
This paper is divided into two parts. Part One Chapter 1 contains the deduction of the model for vertical vibrations of elastic strings with moving ends and its relations to the models of d'Alembert and Kirchhoff-Carrier. Chapter 2 contains the results of investigations related to Kirchhoff-Carrier model during the last twenty years and an almost complete bibliography. Part Two Chapter 3 of the paper is dedicated to the model with moving ends. It contains new results obtained by the authors during the last five years.
Tài liệu tham khảo
F. A. Aliev, On a mixed problem for quasilinear hyperbolic equation, Doklady Acad. Sci. Azerbajão CCCP, 7, 6–9 (1987) (in Russian).
N. G. Andrade, On a nonlinear system of partial differential equations, J. Math. Analysis and Appl. 91(1), 119–130 (1983).
N. G. Andrade, On onesided problem connected with a nonlinear system of partial differential equations. An. Acad. Bras. Ciências, 613–618 (1982).
A. Arosio, Global (in time) solution of the approximated nonlinear string equation of G. F. Carrier and R. Narashima, Math. Univ. Carol. 26, 166–171 (1985).
A. Arosio and S. Panizzi, On the well posedness of Kirchhoff string, Trans. Amer. Math. Soc. 348(1), 305–330 (1996).
A. Arosio and S. Spagnolo, Global solutions to the Cauchy problem for a nonlinear hyperbolic equation. Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar, Vol. 6, H. Brezis and J. L. Lions, eds. (Pitman, London, 1984).
A. Arosio and S. Garivaldi, On the degenerated Kirchhoff string, Math. Appl. Science 14, 177–195 (1991).
D. Bainov and E. Minchev, Above estimate of the interval of existence of solutions of the nonlinear Kirchhoff equation, Comptes Rendus de l'Academi Bulgare de Sciences. 48(5), 13–14 (1995).
J. M. Ball, Initial value problems for extensible beams, J. Math. Analysis and Appl. 42, 61–90 (1973).
S. Bernstein, Sur une classe d'équations fonctionelles aux derivées partielles, Isv. SSSR, Serie Math. 4, 17–26 (1940).
P. Biler, Remark on the decay for damped string and beam equations. Nonlinear Analysis, Theory Methods and Applications, 10(9), 839–842 (1986).
E. Bisognin, Hyperbolic parabolic equations with nonlinearity of Kirchhoff-Carrier type, Revista de Matemática da Univ. Complutense de Madrid, 8(2), 402–430 (1995).
H. Brezis, Analyse fonctionelle (théorie et applications). Masson, Paris (1983).
H. Brezis and T. Cazenave, Nonlinear evolution equations (Course IM-UFRJ-1996) (to appear).
E. H. Brito, The damped elastic stretched string equation generalized: existence, uniqueness, regularity and stability, Applicable Analysis, 13, 219–233 (1982).
E. H. Brito, Remarks on the decay for damped strings and beams, Nonlinear Analysis, Theory Methods and Applications, 19, 839–842 (1986).
E. H. Brito, Decay estimates for generalized damped extensible strings and beams equation, Nonlinear Analysis, Theory Methods and Applications, 8, 1489–1496 (1984).
E. H. Brito, Nonlinear initial boundary value problems, Nonlinear Analysis, Theory Methods and Applications II, 125–137 (1987).
E. H. Brito, A nonlinear hyperbolic equation, Int. J. Math. and Math. Sci. 3(3), 505–520 (1980).
E. H. Brito, Time periodic weak solutions, Int. J. Math. and Math. Sci. 13(1), 145–150 (1990)..
F. E. Browder, On nonlinear wave equations, Math. Zeits. 80, 249–264 (1962).
G. E. Carrier, On the nonlinear vibration problem of elastic string, Q. J. Appl. Math. 3, 157–165 (1945).
E. Carrillo, On blow-up for nonlinear Kirchhoff equation, Atas do 42º Sem. Bras. de Análise, 513–522 (1996).
R. Cipolati, On the local solutions of a system of nonlinear hyperbolic equations, Estudos e Comunicaçõ es do IM, 35, IM-UFRJ (1988).
H. Clark, Global classical solutions to the Cauchy problem for a nonlinear wave equation, Int. J. Math. and Math. Sci. 21(3), 533–548 (1998).
E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations (McGraw Hill, New York, 1965).
F. Colombini, E. Di Giorgi, and S. Spagnolo, Sur les équations hyperboliques avec des coeficients qui ne dependent que du temps, Ann. Soci Norm. Sup. Pisa Classi di Scienze Serie IV, Vol. VI(3) 511–559 (1979).
A. T. Cousin, Regular solutions of a nonlinear model for vibrations of beams in unbounded domains, Nonlinear Analysis, Theory Methods and Applications 22(9), 1153–1162 (1994).
A. T. Cousin et al., On the abstract model of the Kirchhoff-Carrier equation, Communication in Applied Analysis 1, 3, 389–404 (1997).
H. R. Crippa, On local solutions of some mildly degenerate hyperbolic equations, Nonlinear Analysis, Theory Methods and Applications 21(8), 565–574 (1993).
P. D'Ancona and S. Spagnolo, On abstract weakly hyperbolic equation modeling the nonlinear vibration string. Lectures Notes Un. Pisa (1992).
P. D'Ancona and S. Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic data, Invenciones Matematicae, 108, 247–262 (1992).
R. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science andTechnology, Vol. 3, ch 8, (Springer-Verlag, 1983).
R. W. Dickey, The initial value problem for nonlinear semi-infinite string. Proceeding of the Royal Society of Edinburgh, 82A, 19–26 (1978).
R. W. Dickey, Infinite system of nonlinear oscillation equations related to the string, Proc. of the A.M.S. 23, 459–468 (1969).
R. W. Dickey, Free vibrations and dynamical buckling of the extensible beam, J. Math. Anal. Applic. 29, 443–451 (1970).
R. W. Dickey, A quasilinear evolution equation and the method of Galerkin, Proc. of the A.M.S. 37(1), 149–156 (1973).
J. Dixmier, Les algèbres d'operateurs dans les espaces Hilbertien (Gauthier-Villars, Paris, 1957).
N. A. Dragieva, Solution of wave equation in a domain with moving boundaries by Galerkin's method, Zh. Vychsl Math. and Math. Fis. 3(1), 170–179 (1963).
Y. Ebihara, L. A. Medeiros, and M. Milla Miranda, Local solutions for a nonlinear degenerate hyperbolic equation, Nonlinear Analysis, Theory Methods and Applications, 10, 27–40 (1986).
Y. Ebihara, L. A. Medeiros, and M. Milla Miranda, On a variational inequality for a nonlinear operator of hyperbolic type, Bull. Soc. Bras. Math. 16(2), 41–54 (1985).
Y. Ebihara, On the existence of local solution for some degenerate quasilinear hyperbolic equations, An. Acad. Bras. Ciências, 57(2), 145–152 (1985).
A. R. Feitosa and S. Durães, Some remarks on the global existence of solutions and energy decay for a class of hyperbolic equations, Atas do 46º Sem. Bras. de Análise, 556–572 (1997).
J. Limaco Ferrel and L. A. Medeiros, Kirchhoff-Carrier elastic strings in noncylindrical domains. (Accepted for publication in Portugaliae Mathematica).
C. L. Frota, Nonlocal solutions of a nonlinear hyperbolic partial differential equation, Port. Math. 51(3), 455–473 (1994).
C. L. Frota, Global solutions for a nonlinear unilateral problem, An. Acad. Bras. de Ciéncias, 66(1), 1–11 (1996).
C. L. Frota and J. A. Goldstein, Some nonlinear wave equations with acoustic boundary conditions, J. Diff. Equations (to appear).
C. L. Frota and N. A. Larkin, On global existence and uniqueness for the unilateral problem associated to the degenerate Kirchhoff-Carrier equation, Nonlinear Analysis, Theory Methods and Applications, 48(1), 441–452 (1996).
D. Fujiwara, Concrete characterization of the domains of fractional power some elliptic differential operator of second order, Proc. Japan Acad. 43, 82–86 (1967).
J. M. Greenberg and S. C. Hu, The initial value problem for a stretched string, Quart. Appl. Math. 38, 289–311 (1980).
Di Greg and Qu. Chang-Zheng, On nonlinear hyperbolic equation in unbounded domain, Appl. Math. and Mechanics, 13(3), 255–261 (1992).
A. Haraux, Nonlinear evolution equations. Global solutions and stability. Lectures Notes in Mathematics 891 (Springer-Verlag, New York, 1981).
M. Hasoya and Y. Yamada, On some nonlinear wave equations I-local existence and regularity of solutions, J. Fac. of Sci. (Univ. of Tokyo), Ser. 14, Vol. 38(2), 225–238 (1991).
M. Hasoya and Y. Yamada, On some nonlinear wave equations II-global existence and energy decay of solutions, J. Fac. of Sci. (Univ. of Tokyo) Vol. 38(2), 239–250 (1991).
M. L. Heard, A quasilinear hyperbolic integro differential equation related to a nonlinear string, Trans. Am. Math. Soc. 285(2), 805–823 (1984).
G. Kirchhoff, Vorlesungen über mechanik. (Tauber, Leipzig, 1883).
A. N. Kludnev, A one-sided problem connected with a weakly nonlinear parabolic operator, Siberian Math. J., 19, 412–417 (1978).
V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation, J. Math. Pure Appl. 69, 33–54 (1980).
N. A. Larkin, The unilateral problem for nonlocal quasilinear hyperbolic equation of the theory of elasticity, Doklady Acad. URSS, 274(6), 341–344 (1984) (in Russian).
J. L. Lions, On some questions in boundary value problems of mathematical physics. Contemporary development in continuum mechanics and partial differential equations. (G. M. de La Penha and L. A. Medeiros, eds. (North-Holland, Amsterdam, 1978), pp. 285–346.
J. L. Lions, Quelques métodes de résolution des problèmes aux limites nonlineéaires (Dunod, Paris, 1969).
J. L. Lions and E. Magenes, Problèmes aux limites nonhomogénes et applications, Vol. 1 (Dunod, Paris, 1968).
A. Maciel and O. A. Lima, Nonlinear perturbation of Kirchhoff-Carrier equations, Atas do 42º Sem. Bras. de Análise, 293–300 (1995).
R. I. Maguinã and V. V. Bezerra, Solución local para una classe de ecuaciones nonlineales de tipo Kirchhoff, Atas do 46º Sem. Bras. de Análise, 605–613 (1997).
M. P. Matos and D. Pereira, On a hyperbolic equation with strong dissipation, Funkcialaj Ekvacioj, 34, 303–331 (1991).
M. P. Matos, Mathematical analysis of the nonlinear model for vibrations of a string, Nonlinear Analysis, 17(12), 125–137 (1991).
L. A. Medeiros and M. Milla Miranda, On nonlinear wave equation with damping. Revista Matematica de la Universidad Complutense de Madrid, 13(2), 213–231 (1990).
L. A. Medeiros and M. Milla Miranda, Local solutions for nonlinear unilateral problem. Revue Romaine de Math. Pures et Appliquées, 31, 371–382 (1986).
L. A. Medeiros and N. A. Larkin, Nonlinear unilateral problem for a nonlinear hyperbolic equation of the theory of elasticity, Matemática Contemporânea, 3, 109–126 (1992).
L. A. Medeiros, On the nonlinear equation of elastic strings, 29º Sem. Bras. de Análise, 1–28 (1988).
L. A. Medeiros, On some nonlinear perturbation of Kirchhoff-Carrier operator, Comp. and Appl. Math. 13(3), 225–233 (1994).
L. A. Medeiros, On a new class of nonlinear wave equations, J. Math. An. and Appl. 69, 252–262 (1979).
L. A. Medeiros and M. Milla Miranda, Solutions for the equation of nonlinear vibrations in Sobolev spaces of fractionary order, Math. Appl. Comp. 6(3), 257–276 (1987).
G. P. Menzala, On classical solutions of a quasilinear hyperbolic equation, Nonlinear Analysis, 3, 613–627 (1979).
G. P. Menzala, Une solution d'une équation nonlinéaire d’ évolution, C. R. Acad. Sci., Paris, 286, 273–275 (1978).
G. P. Menzala, On global classical solutions of a nonlinear wave equation, Appl. Analysis, 10, 179–195 (1980).
M. Milla Miranda, Análise espectral em espaços de Hilbert, Textos de Métodos Matemáticos, IM-UFRJ (1990).
M. Mustapha, Problème de Cauchy a donńees initiales petites, Annales de Mathématiques de l'Université Sidi Bel-Abbes, 3, 7–13 (1996).
M. Nakao, Decay of solutions of some nonlinear evolution equations, J. Math. Anal. and Appl. 60, 542–549 (1977).
R. Narashinham, Nonlinear vibrations of an elastic string, J. Sound Vibr. 8, 134–136 (1968).
W. G. Newman, Global solution of a nonlinear string equation, J. Math. Anal. Applic. 192, 689–704 (1995).
T. Nishida, Nonlinear vibration of elastic strings II (Unpublished).
K. Nishihara, Global existence and asymptotic behavior of the solution of some quasilinear hyperbolic equation with linear damping, Funkcialaj Ekvacioj, 32(3), 343–355 (1989).
K. Nishihara, Degenerate quasilinear hyperbolic equation with strong damping, Funkcialaj Ekvacioj, 27(1), 125–145 (1984).
K. Nishihara and Y. Yamada, On global solutions of some degenerate quasi-linear hyperbolic equations with dissipative terms, Funkcialaj Ekvacioj, 33(1), 151–159 (1990).
K. Nishihara and K. Ono, Asymptotic behavior of solutions of some nonlinear oscillation equations with strong damping, Adv. in Math. Sci. and Appl. 4(2), 285–295 (1994).
K. Ono and K. Nishihara, On a nonlinear degenerate integrodifferential equation of hyperbolic type with a strong dissipation, Adv. in Math. Sci. and Appl. (Tokyo) 5(2), 457–476 (1995).
S. K. Patcheau, Existence globale et decroissance exponentielle de l'énergie d'une équation quasilinéaire, C. R. Acad. Sci. Paris T.322, Serie I, 631–634 (1996).
D. C. Pereira, M. C. Campos Vieira, and T. M. Rabello, Local solution of a mixed problem for a degenerated hyperbolic equation, Acta Math. Hung. 60(1-2), 61–71 (1992).
D. C. Pereira, Existence, uniqueness and asymptotic behavior for solutions of the nonlinear beam equation, Nonlinear Analysis, Theory Methods and Applications, 14(8), 613–623 (1990).
S. I. Pohozhaev, On a class of quasilinear hyperbolic equations, Math. USSR Sbornik, 25, 145–158 (1975).
S. I. Pohozhaev, The Kirchhoffquasiline ar hyperbolic equation, Differential Equations, 21(1), 101–108 (1985) (in Russian).
S. I. Pohozhaev, Quasilinear hyperbolic equations of Kirchhofftype and conservation law, Tr. Mosk. Energ. Inst. Moscow, 201, 118–126 (1974) (in Russian).
O. Ramos, Regularity property for the nonlinear beam operator, An. Acad. Bras. de Ciências, 61(1), 15–25 (1989).
P. H. Rivera Rodrigues, On local solutions of some nonlinear partial differential equations, Applicable Analysis, 10, 93–104 (1984).
P. H. Rivera Rodrigues, On nonlinear hyperbolic partial differential equations. Rev. de Ciências, Univ. São Marcos, 74(1), 1–16 (1986) (Lima, Peru).
Ya. I. Sidelnik, Existence and uniqueness of generalized solutions of the mixed problem for an equation of plane oscillation type in noncylindrical domains, Math. Fisiko Mechanicheski, Pollya Issue, 28, 98–100 (1988)
J. Simon, Compact sets in space L2(0, T;B), Ann. di Mat. Pure Appl. 146(4), 65–96 (1987).
S. Spagnolo, The Cauchy problem for Kirchhoff equations, Rendiconti del Seminario Matematico e Fisico di Milano, LXII, 17–51 (1992).
S. Spagnolo, Solutions analytiques d'une équation nonlinéaire de type hyperbolique, Seminaire Vailant, 83 (Herman, Paris, 1983), pp. 25–43.
W. A. Strauss, Nonlinear wave equations (George Mason University, USA, January, 1989).
W. A. Strauss, The energy method in nonlinear partial differential equations, Textos de Matemática, 47 (IMPA, Rio de Janeiro, RJ, 1969).
R. Torrejon and J. Yong, On a quasilinear wave equation with memory, Nonlinear Analysis, Theory Methods and Applications 16(1), 61–78 (1991).
M. Tsutsumi, Some nonlinear evolution equation of second order, Proc. Acad. of Sciences of Japan, 47, 450–455 (1971).
M. Tucsnak, On an initial and boundary value problem for nonlinear Timoshenko beam, An. Acad. Bras. de Ciéncias, 115–125 (1991).
C. F. Vasconcellos, On the nonlinear wave equation in unbounded domain, Int. J. Math. and Math. Sci. 11(2), 335–342 (1988).
Y. Yamada, Some nonlinear degenerate wave equations, Nonlinear Analysis, Theory Methods and Appl. 11(10), 1155–1168 (1987).
T. Yamazaki, On local solutions of some quasilinear degenerate hyperbolic equations, Funkcialaj Ekvacioj, 31, 439–457 (1988).
E. Zuazua, Stability and decay for a class of nonlinear hyperbolic problems, Asymptotic Analysis, 1, 2, 161–185 (1988).