Vibrationally excited N2 and O2 in the upper atmosphere: A review
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abbaspour, M., Goharshadi, E., and Emampour, J., Determination of Potential Energy Functions and Calculation Transport Properties of Oxygen and Nitric Oxide via the Inversion of Reduced Viscosity Collision Integrals at Zero Pressure, Chem. Phys., 2006, vol. 326, no. 2-3, pp. 620–630.
Ahn, T., Adamovich, I., and Lempert, W.R., Stimulated Raman Scattering Measurements of V-V Transfer in Oxygen, Chem. Phys., 2006, vol. 323, no. 2-3, pp. 532–544.
Albritton, D.L., Dotan, I., Lindinger, W., McFarland, M., Tellinghuisen, J., and Fehsenfeld, F.C., Effects of Ion Speed Distributions in Flow-Drift Tube Studies on Ion-Neutral Reactions, J. Chem. Phys., 1977, vol. 66, no. 2, pp. 410–421.
Allan, M., Measurement of Absolute Differential Cross Sections for Vibrational Excitation of O2 by Electron Impact, J. Phys. B, 1995, vol. 28, no. 23, pp. 5163–5175.
Allen, M., Modelling the Atmospheric Response to Doubled CO2 and Depleted Stratospheric Ozone Using a Stratosphere-Resolving Coupled, J. Geophys. Res., 1986, vol. 91, pp. 2844–2848.
Barth, C.A., Mankoff, K.D., Bailey, S.M., and Solomon, S.C., Global Observations of Nitric Oxide in the Thermosphere, J. Geophys. Res., 2003, vol. 108, p. 1027; doi:10.1029/2002JA009458.
Billing, G., Semiclassical Calculation of the Rate Constant for the Process N2(v = 1) + N2(v = 0) → 2N2(v = 0) + 2330.7 cm−1 at Low Temperatures, Chem. Phys. Lett., 1980, vol. 76, no. 1, pp. 178–182.
Billing, G.D. and Kolesnick, R.E., Vibrational Relaxation of Oxygen. State to State Rate Constants, Chem. Phys. Lett., 1992, vol. 200, no. 4, pp. 382–386.
Brasseur, G.P. and Solomon, S., Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere, Berlin: Springer, 2005.
Brinton, H.C., Grebowsky, J.M., and Brace, L.H., The High-Latitude Winter F Region at 300 km — Thermal Plasma Observations from AE-C, J. Geophys. Res., 1978, vol. 83, no. 10, pp. 4767–4776.
Bryunelli, B.E. and Namgaladze, A.A., Fizika ionosfery (Physics of the Ionosphere), Moscow: Nauka, 1988.
Cacciatore, M., Kurnosov, A., and Napartovich, A., Vibrational Energy Transfer in N2-N2 Collisions: A New Semiclassical Study, J. Chem. Phys., 2005, vol. 123, p. 174315; doi:10.1063/1.2101445.
Chabrillat, S., Kockarts, G., Fonteyn, D., and Brasseur, G., Impact of Molecular Diffusion on the CO2 Distribution and the Temperature in the Mesosphere, Geophys. Res. Lett., 2002, vol. 29, no. (1–4), p. 1729; doi:10.1029/2002GL015309.
Coletti, C. and Billing, G.D., Vibrational Energy Transfer in Molecular Oxygen Collisions, Chem. Phys. Lett., 2002, vol. 356, no. 1–2, pp. 14–22.
Curtis, S.A., Hoegy, W.R., Brace, L.H., and Winningham, J.D., Cusp Altitudinal Electron Temperature Gradient: Dynamics Explorer 2 Implications for Heating Mechanisms, J. Geophys. Res., 1985, vol. 90, pp. 4415–4419.
Dmitrieva, I.K. and Zenevich, V.A., Effect of the Vibrational Nitrogen Excitation on the Rate Constant of the N2(v) + O → NO + N: A Theoretical-Information Approximation, Khim. Fiz., 1984, vol. 3, no. 8, pp. 1075–1080.
Eckstrom, D.J., Vibrational Relaxation of Shock-Heated N2 by Atomic Oxygen Using the IR Tracer Method, J. Chem. Phys., 1973, vol. 59, no. 6, pp. 2787–2795.
Esposito, F. and Capitelli, M., The Relaxation of Vibrationally Excited O2 Molecules by Atomic Oxygen, Chem. Phys., 2007, vol. 443, no. 4–6, pp. 222–226.
Ferdiger, J. and Kaper, G., Matematicheskaya teoriya protsessov perenosa v gazakh (Mathematical Theory of Transfer Processes in Gases), Moscow: Mir, 1976.
Ferguson, E.E., Adams, N.G., Smith, D., and Alge, E., Rate Coefficients at 300 K for the Vibrational Energy Transfer Reactions from N2(v = 1) to O 2 + (v = 0) and NO+(v = 0), J. Chem. Phys., 1984, vol. 80, no. 12, pp. 6095–6098.
Gamallo, G., Sayós, R., González, M., Petrongolo, C., and Defazio, P., Quantum Real Wave-Packet Dynamics of the % MathType!MTEF!2!1!+- % feaagaart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC % vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz % ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbb % L8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpe % pae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaaiaabeqaam % aaeaqbaaGcbaacbaGae8Nta4Kae8hkaGYaaWbaaSqabeaacqWF0aan % aaGccqWGtbWucqGGPaqkcqWFRaWkcqWFobGtcqWFpbWtcqWFOaakie % GacuGFybawgaqeamaaCaaaleqabaGae8NmaidaaOGaeuiOdaLaeiyk % aKIaeyOKH4Qae8Nta40aaSbaaSqaaiab-jdaYaqabaGccqWFOaakcu % GFybawgaqeamaaCaaaleqabaGae8xmaedaaOGaeu4OdmLae83zaC2a % aWbaaSqabeaacqWFRaWkaaGccqGGPaqkcqWFRaWkcqWFpbWtcqWFOa % akdaahaaWcbeqaaiab-ndaZaaakiabdcfaqjabcMcaPaaa!5AE1! $$ N(^4 S) + NO(\bar X^2 \Pi ) \to N_2 (\bar X^1 \Sigma g^ + ) + O(^3 P) $$ Reaction on the Ground and First Excited Triplet Potential Energy Surfaces: Rate Constants, Cross Sections, and Product Distributions, J. Chem. Phys., 2006, vol. 124, no. 17, p. 174303; doi:10.1063/1.2186643.
Gilmore, F.R., Bauer, E., and McGowan, J.W., A Review of Atomic and Molecular Excitation Mechanisms in Nonequilibrium Gases up to 20000 K, J. Quant. Spectrosc. Radiat. Transfer, 1969, vol. 9, no. 2, pp. 157–183.
Gordiets, B.F., Vibrational Relaxation of N2 Anharmonic Molecules and Nitrogen Oxide Concentrations in a Disturbed Thermosphere, Geomagn. Aeron., 1977, vol. 18, no. 5, pp. 871–878.
Gordiets, B.F., Osipov, A.I., and Shelepin, L.A., Kineticheskie protsessy v gazakh i molekulyarnye lazery (Kinetic Processes in Gases and Molecular Lasers), Moscow: Nauka, 1980.
Green, J.G., Shi, J., and Barker, J.R., Photochemical Kinetics of Vibrationally Excited Ozone Produced in the 248-nm Photolysis of O2/O3 Mixtures, J. Phys. Chem. A, 2000, vol. 104, no. 26, pp. 6218–6226.
Hickson, K.M., Sharkey, P., Smith, I.W.M., Symonds, A.C., Tuckett, R.P., and Ward, G.N.J., Formation and Relaxation of O2(X 3Σ g − ) in High Vibrational Levels (18 ≤ v ≤ 23) in the Photolysis at 266 nm, Chem. Soc., Faraday Trans., 1998, vol. 94, no. 4, pp. 533–540.
Hierl, P.M., Dotan, I., Seeley, J.V., Van Doren, J.M., Morris, R.A., and Viggiano, A.A., Rate Constants for the Reactions of O+ with N2 and O2 as a Function of Temperature (300–1800 K), J. Chem. Phys., 1997, vol. 106, no. 9, pp. 3540–3444.
Huffman, R.E., Paulsen, D.E., Larrabee, J.C., and Cairns, R.B., Decrease in D-Region O2 (1Δg) Photo-Ionization Rates Resulting from CO2 Absorption, J. Geophys. Res., 1971, vol. 76, no. 4, pp. 1028–1038.
Jenkins, B., Bailey, G.J., Ennis, A.E., and Moffett, R.J., The Effect of Vibrationally Excited Nitrogen on the Low-Latitude Ionosphere, Ann. Geophys., 1997, vol. 15, no. 11, pp. 1422–1428.
Kalanov, T.Z., Osipov, A.I., Panchenko, V.Ya., and Khabibulaev, P.K., Kolebatel’naya relaksatsiya v gazovykh sistemakh s istochnikami kolebatel’no-vozbuzhdennykh molekul (Vibrational Relaxation in Gas Systems with Sources of Vibrationally Excited Molecules), Tashkent: FAN, 1981.
Kalogerakis, K.S., Copeland, R.A., and Slanger, T.G., Vibrational Energy Transfer in O2(X 3Σ g − , v = 2, 3) + O2 Collisions at 330 K, J. Chem. Phys., 2005a, vol. 123, no. 4, p. 44309; doi:10.1063/1.1982788.
Kalogerakis, K.S., Copeland, R.A., and Slanger, T.G., Measurement of the Rate Coefficient for Collisional Removal of O2(X 3Σ g − v = 1) by O(3 P), J. Chem. Phys., 2005b, vol. 123, no. 19, p. 194303; doi:10.1067/1.2110227.
Kozyra, J.U., Nagy, A.F., and Slater, D.W., High-Altitude Energy Source(s) for Stable Auroral Red Arcs, Rev. Geophys., 1997, vol. 35, no. 2, pp. 155–190.
Krasnopol’skii, V.A., Fizika svecheniya atmosfer planet i komet (Physics of Luminosity of Planet’s and Comet’s Atmospheres), Moscow: Nauka, 1987.
Kurihara, J., Oyama, K.-I., Suzuki, K., and Iwagami, N., Vibrational Rotational Temperature Measurement of N2 in the Lower Thermosphere by the Rocket Experiment, Adv. Space Res., 2003, vol. 32, no. 5, pp. 725–729.
Lobzin, V.V., Pavlov, A.V., and Pavlova, N.M., An Anomalous Subauroral Red Arc on 4 August 1972: Comparison of ISIS-2 Satellite Data with Numerical Calculations, Ann. Geophys., 1999, vol. 17, no. 11, pp. 1411–1425.
Losev, S.A., Umanskii, S.Ya., and Yakubov, I.T., Fizikokhimicheskie protsessy v gazovoi dinamike. Spravochnik. Tom 1. Dinamika fiziko-khimicheskikh protsessov v gaze i plazme (Physicochemical Processes in the Gas Dynamics: A Handbook, vol. 1, Dynamics of Physicochemical Processes in Gas and Plasma), Moscow: Mosk. Gos. Univ., 1995.
Mack, J.A., Huang, Y., Wodtke, A.M., and Schatz, G.C., The Product Vibrational, Rotational, and Translational Energy Distribution for the Reaction O(3PJ) + O3 → 2O2: Breakdown of the Spectator Bond Mechanism, J. Chem. Phys., 1996, vol. 105, no. 17, pp. 7495–7503.
McFarland, M., Albritton, D.L., Fehsenfeld, F.C., Ferguson, E.E., and Schmeltekopf, A.L., Flow-Drift Technique for Ion Mobility and Ion-Molecule Reaction Rate Constant Measurements. II. Positive Ion Reactions of N+, O+, and H 2 + with O2 and O+ with N2 from Thermal to ∼2 eV, J. Chem. Phys., 1973, vol. 59, no. 12, pp. 6620–6635.
McNeal, R.G., Whitson, M.E., and Cook, G.R., Temperature Dependence of the Quenching of Vibrationally Excited Nitrogen by Atomic Oxygen, J. Geophys. Res., 1974, vol. 79, no. 10, pp. 1527–1531.
Miller, R.L., Suits, A.G., Houston, P.L., Toumi, R., Mack, J.A., and Wodtke, A.M., The “Ozone Deficit” Problem: O2(X, v ≥ 26) + O(3 P) from 226-nm Ozone Photodissociation, Science, 1994, vol. 265, no. 5180, pp. 1831–1838.
Mishin, E.V., Ruzhin, Yu.Ya., and Telegin, V.A., Vzaimodeistvie elektronnykh puchkov s ionosfernoi plazmoi (Interaction between Ion Beams and an Ionospheric Plasma), Leningrad: Gidrometeoizdat, 1989.
Montroll, E.W. and Shuler, K.E., Studies in Nonequilibrium Rate Processes. I. The Relaxation of a System of Harmonic Oscillators, J. Chem. Phys., 1957, vol. 26, no. 3, pp. 454–464.
Newton, G.P., Walker, J.C.G., and Mantas, G.P., Effects of Soft Electron Precipitation on the Distribution of Vibrational Energy of N2, J. Geophys. Res., 1977, vol. 82, no. 1, pp. 187–190.
Oyama, K.-I., Insitu Measurements of Te in the Lower Ionosphere — a Review, Adv. Space Res., 2000, vol. 26, no. 8, pp. 1231–1240.
Patten, K.O., Connell, P.S., Kinnison, D.E., Wuebbles, D.J., Slanger, T.G., and Froidevaux, L., Effect of Vibrationally Excited Oxygen on Ozone Production in the Stratosphere, J. Geophys. Res., 1994, vol. 99, pp. 1211–1224.
Pavlov, A.V., Binary Coefficients of Molecular Diffusion of the Neutral Components in the Upper Atmospheres of the Earth, Mars, and Venus, Kosm. Issled., 1981, vol. 19, no. 1, pp. 82–86.
Pavlov, A.V., The Method for Taking into Consideration of the Effect of Vibrationally Excited Nitrogen on the Composition of the Ionosphere, Preprint of Inst. of Terrestrial Magnetism, Ionosphere, and Radiowave Propagation, Russ. Acad. Sci., Moscow, 1985, no. 76 (609), p. 24.
Pavlov, A.V., The Role of Vibrationally Excited Nitrogen in the Ionosphere, Pure App. Geophys., 1988, vol. 127, no. 2/3, pp. 529–544.
Pavlov, A.V., On the Role of Vibrationally Excited Nitrogen in the Region of Stable Auroral Red Arcs, Geomagn. Aeron., 1989, vol. 29, no. 6, pp. 948–953.
Pavlov, A.V., The Role of Vibrationally Excited Nitrogen in the Formation of the Mid-Latitude Negative Ionospheric Storms, Ann. Geophys., 1994a, vol. 12, no. 6, pp. 554–564.
Pavlov, A.V., The Role of Vibrationally Excited Oxygen and Nitrogen in the D and E Regions of the Ionosphere, Ann. Geophys., 1994b, vol. 12, no. 10, pp. 1085–1090.
Pavlov, A.V., Mechanisms of the Electron Density Depletion in the SAR Arc Region, Ann. Geophys., 1996, vol. 14, no. 2, pp. 211–221.
Pavlov, A.V., Subauroral Red Arcs as a Conjugate Phenomenon: Comparison of OV1–10 Satellite Data with Numerical Calculations, Ann. Geophys., 1997, vol. 15, no. 8, pp. 984–998.
Pavlov, A.V., New Electron Energy Transfer Rates for Vibrational Excitation of N2, Ann. Geophys., 1998a, vol. 16, no. 2, pp. 176–182.
Pavlov, A.V., The Role of Vibrationally Excited Oxygen and Nitrogen in the Ionosphere during the Undisturbed and Geomagnetic Storm Period of 6–12 April 1990, Ann. Geophys., 1998b, vol. 16, no. 5, pp. 589–601.
Pavlov, A.V., New Electron Energy Transfer and Cooling Rates by Excitation of O2, Ann. Geophys., 1998c, vol. 16, no. 8, pp. 1007–1013.
Pavlov, A.V., New Method in Computer Simulations of Electron and Ion Densities and Temperatures in the Plasmasphere and Low-Latitude Ionosphere, Ann. Geophys., 2003, vol. 21, no. 7, pp. 1601–1628.
Pavlov, A.V., The Role of the Zonal ExB Plasma Drift in the Low Latitude Ionosphere at High Solar Activity near Equinox from a New Three-Dimensional Theoretical Model, Ann. Geophys., 2006, vol. 24, no. 10, pp. 2553–2572.
Pavlov, A.V. and Buonsanto, M.J., Using Steady State Vibrational Temperatures to Model Effects of N 2 * on Calculations of Electron Densities, J. Geophys. Res., 1996, vol. 101, pp. 26941–26945.
Pavlov, A.V. and Foster, J.C., Model/Data Comparison of F Region Ionospheric Perturbation over Millstone Hill during the Severe Geomagnetic Storm of 15–16 July, 2000, J. Geophys. Res., 2001, vol. 106, no, pp. 29051–29070.
Pavlov, A.V. and Fukao, S., The Ionospheric F2-Region at Low Geomagnetic Latitudes during the Geomagnetic Storms of 22–26 April 1990: Comparison of Observed and Modeled Response, J. Atmos. Sol.-Terr. Phys., 2007, vol. 69, no. 7, pp. 835–859.
Pavlov, A.V. and Namgaladze, A.A., Vibrationally Excited Nitrogen in the Upper Atmosphere, Geomagn. Aeron., 1988, vol. 28, no. 5, pp. 705–721.
Pavlov, A.V. and Pavlova, N.M., Comparison of the Measured and Modeled Electron Densities and Temperatures in the Ionosphere and Plasmasphere during 14–16 May 1991, J. Atmos. Sol.-Terr. Phys., 2004, vol. 66, no. 1, pp. 89–104.
Pavlov, A.V. and Pavlova, N.M., Causes of the Mid-Latitude NmF2 Winter Anomaly at Solar Maximum, J. Atmos. Sol.-Terr. Phys., 2005, vol. 67, no. 10, pp. 862–877.
Pavlov, A.V., Buonsanto, M.J., Schlesier, A.C., and Richards, P.G., Comparison of Models and Data at Millstone Hill during the June 5–11, 1991, Storm, J. Atmos. Sol.-Terr. Phys., 1999, vol. 61, no. 3/4, pp. 263–279.
Pavlov, A.V., Abe, T., and Oyama, K.-I., Comparison of the Measured and Modelled Electron Densities and Temperatures in the Ionosphere and Plasmasphere during 20–30 January 1993, Ann. Geophys., 2000, vol. 18, no. 10, pp. 1257–1272.
Pavlov, A.V., Abe, T., and Oyama, K.-I., Comparison of the Measured and Modeled Electron Densities and Temperatures in the Ionosphere and Plasmasphere during the Period of 25–29 June 1990, J. Atmos. Sol.-Terr. Phys., 2001, vol. 63, no. 6, pp. 605–616.
Pavlov, A.V., Fukao, S., and Kawamura, S., F Region Ionospheric Perturbations in the Low-Latitude Ionosphere during the Geomagnetic Storm of 25–27 August 1987, Ann. Geophys., 2004, vol. 22, no. 10, pp. 3479–3501.
Pavlov, A.V., Pavlova, N.M., and Makarenko, S.F., Comparison of the Calculated and Measured Electron Temperatures and Densities in the Middle Ionosphere and Plasmasphere in November 13–15, 1991, Geomagn. Aeron., 2005, vol. 45, no. 5, pp. 629–641 [Geomagn. Aeron. (Engl. Transl.), 2005, vol. 45, pp. 592–603].
Pavlov, A.V., Fukao, S., and Kawamura, S., A Modeling Study of Ionospheric F2-Region Storm Effects at Low Geomagnetic Latitudes during 19–22 March 1990, Ann. Geophys., 2006, vol. 24, no. 3, pp. 915–940.
Pavlov, A.V., Pavlova, N.M., Makarenko, S.F., and Shubin, V.N., Anomalous Variations in the Structure of the Ionospheric F2 Region at Geomagnetic Midlatitudes of the Southern and Northern Hemispheres in Going from Summer to Winter Conditions at High Solar Activity, Geomagn. Aeron., 2008, vol. 48, no. 1, pp. 79–92 [Geomagn. Aeron. (Engl. Transl.), 2008, vol. 48, pp. 75–88].
Pejakovic, D.A., Kalogerakis, K.S., Copeland, R.A., and Huestis, D.L., Laboratory Determination of the Rate Coefficient for Three-Body Recombination of Oxygen Atoms in Nitrogen, J. Geophys. Res., 2009, vol. 113, p. A04303; doi:10.1029/2007JA012694.
Picone, J.M., Hedin, A.E., Drob, D.P., and Aikin, A.C., NRLMSISE-00 Empirical Model of the Atmosphere: Statistical Comparisons and Scientific Issues, J. Geophys. Res., 2002, vol. 107, p. 1468; doi:10.1029/2002JA009430.
Pitout, F. and Blelly, P.-L., Electron Density in the Cusp Ionosphere: Increase or Depletion?, Geophys. Res. Lett., 2003, vol. 30, no. 14, p. SSC 2–1, CiteID 1726; doi:10.1029/2003GL017151.
Plönjes, E., Palm, P., Lee, W., Chidley, M.D., Adamovich, I.V., Lempert, W.R., and Rich, J.W., Vibrational Energy Storage in High Pressure Mixtures of Diatomic Molecules, Chem. Phys., 2000, vol. 260, no. 3, pp. 353–366.
Prölss, G.W. and Werner, S., Vibrationally Excited Nitrogen and Oxygen and the Origin of Negative Ionospheric Storms, J. Geophys. Res., 2002, vol. 107, pp. 1–6, Cit-eID 1016; doi:10.1029/2001JA900126.
Radtsig, A.A. and Smirnov, B.M., Spravochnik po atomnoi i molekulyarnoi fizike (Handbook on Nuclear and Molecule Physics), Moscow: Atomizdat, 1980.
Rishbeth, H., Muller-Wodarg, I.C.F., Zou, L., Fuller-Rowell, T.J., Millward, G.H., Moffett, R.J., Idenden, D.W., and Aylward, A.D., Annual and Semiannual Variations in the Ionospheric F2-Layer: II. Physical Discussion, Ann. Geophys., 2000, vol. 18, no. 7, pp. 945–956.
Schmeltekopf, A.L., Ferguson, E.E., and Fehsenfeld, F.C., Afterglow Studies of the Reactions He+, He(23S), and O+ with Vibrationally Excited N2, J. Chem. Phys., 1968, vol. 48, no. 7, pp. 2966–2973.
Shved, G.M., Kutepov, A.A., and Ogibalov, V.P., Input Data and Populations of the ν3 Mode Manifold States, J. Atmos. Sol.-Terr. Phys., 1998, vol. 60, no. 3, pp. 289–314.
Slanger, T.G. and Copeland, R.A., Energetic Oxygen in the Upper Atmosphere and the Laboratory, Chem. Rev., 2003, vol. 103, no. 12, pp. 4731–4765.
Smith, I.W.M., The Role of Electronically Excited States in Recombination Reactions, Int. J. Chem. Kinetics, 1984, vol. 16, no. 4, pp. 423–443.
Stallcop, J.R., Partridge, H., and Levin, E., Effective Potential Energies and Transport Cross Sections for Interactions of Hydrogen and Nitrogen, Phys. Rev. A, vol. 62, no. 6, pp. 1–15.
St.-Maurice, J.-P. and Laneville, P.J., Reaction Rate of O+ with O2, N2, and NO under Highly Disturbed Auroral Conditions, J. Geophys. Res., 1998, vol. 103, pp. 17519–17521.
St.-Maurice, J.-P. and Torr, O.G., Nonthermal Rate Coefficients in the Ionosphere: The Reaction of O+ with N2, O2 and NO, J. Geophys. Res., 1978, vol. 83, pp. 969–977.
Titheridge, J.E., Model Results for the Ionospheric E Region: Solar and Seasonal Changes, Ann. Geophys., 1997, vol. 15, no. 1, pp. 63–78.
Torr, M.R. and Torr, D.G., The Role of Metastable Species in the Thermosphere, Rev. Geophys. Space Phys., 1982, vol. 20, no. 1, pp. 91–144.
Truhlik, V., Triskova, L., Bilitza, D., and Podolska, K., Variations of Daytime and Nighttime Electron Temperature and Heat Flux in the Upper Ionosphere, Topside Ionosphere and Lower Plasmasphere for Low and High Solar Activity, J. Atmos. Sol.-Terr. Phys., 2009, vol. 71, no. 17/18, pp. 2055–2063.
Viehland, L.A. and Mason, E.A., Statistical-Mechanical Theory of Gaseous Ion-Molecule Reaction in an Electrostatic Field, J. Chem. Phys., 1977, vol. 66, no. 2, pp. 422–434.
Wickwar, V.B. and Kofman, W., Dayside Red Auroras at Very High Latitudes: The Importance of Thermal Excitation, Geophys. Res. Lett., 1984, vol. 11, no. 9, pp. 923–926.
Wine, H., Nicovich, J.M., Thompson, R.J., and Ravishankara, A.R., Kinetics of O(3PJ) Reactions with H2O2 and O3, J. Phys. Chem., 1983, vol. 87, no. 20, pp. 3948–3954.