Vibrational properties of the mononuclear Fe[HBpz3]2 spin crossover complex
Tóm tắt
Within this work, we report the results of nuclear inelastic scattering experiments of the low-spin phase of the iron(II) mononuclear SCO complex Fe[HBpz3]2 and density functional theory based calculations performed on a model molecule of the complex. We show that the calculated partial density of vibrational states based on the structure of a single iron(II) center which is linked by three pyrazole rings to borat is in good accordance with the experimentally obtained 57Fe-pDOS and assign the molecular vibrations to the prominent optical phonons.
Tài liệu tham khảo
Tsukiashi, A., Min, K.S., Kitayama, H., Terasawa, H., Yoshinaga, S., Takeda, M., Lindoy, L.F., Hayami, S.: Application of spin-crossover water soluble nanoparticles for use as MRI contrast agents. Sci. Rep. (2018). https://doi.org/10.1038/s41598-018-33362-6
Linares, J., Codjovi, E., Garcia, Y.: Pressure and temperature spin crossover sensors with optical detection. Sensors (Basel, Switzerland). (2012). https://doi.org/10.3390/s120404479
Boukheddaden, K., Ritti, M.H., Bouchez, G., Sy, M., Dîrtu, M.M., Parlier, M., Linares, J., Garcia, Y.: Quantitative contact pressure sensor based on spin crossover mechanism for civil security applications. J. Phys. Chem. C. (2018). https://doi.org/10.1021/acs.jpcc.8b00778
Hao, G., Mosey, A., Jiang, X., Yost, A.J., Sapkota, K.R., Wang, G.T., Zhang, X., Zhang, J., N'Diaye, A.T., Cheng, R., Xu, X., Dowben, P.A.: Nonvolatile voltage controlled molecular spin state switching. Appl. Phys. Lett. (2019). https://doi.org/10.1063/1.5054909
Shalabaeva, V., Ridier, K., Rat, S., Manrique-Juarez, M.D., Salmon, L., Séguy, I., Rotaru, A., Molnár, G., Bousseksou, A.: Room temperature current modulation in large area electronic junctions of spin crossover thin films. Appl. Phys. Lett. (2018). https://doi.org/10.1063/1.5017458
Mahfoud, T., Molnár, G., Cobo, S., Salmon, L., Thibault, C., Vieu, C., Demont, P., Bousseksou, A.: Electrical properties and non-volatile memory effect of the [Fe(HB(pz) 3 ) 2 ] spin crossover complex integrated in a microelectrode device. Appl. Phys. Lett. (2011). https://doi.org/10.1063/1.3616147
Reger, D.L., Gardinier, J.R., Elgin, J.D., Smith, M.D., Hautot, D., Long, G.J., Grandjean, F.: Structure-function correlations in Iron(II) tris(pyrazolyl)borate spin-state crossover complexes. Inorg. Chem. (2006). https://doi.org/10.1021/ic0607437
Güell, M., Solà, M., Swart, M.: Spin-state splittings of iron(II) complexes with trispyrazolyl ligands. Polyhedron. (2010). https://doi.org/10.1016/j.poly.2009.06.006
Trofimenko, S.: Boron-pyrazole chemistry. II. Poly(1-pyrazolyl)-borates. J. Am. Chem. Soc. (1967). https://doi.org/10.1021/ja00989a017
Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. (1993). https://doi.org/10.1063/1.464913
Stevens, W.J., Basch, H., Krauss, M.: Compact effective potentials and efficient shared-exponent basis sets for the first- and second-row atoms. J. Chem. Phys. (1984). https://doi.org/10.1063/1.447604
Félix, G., Mikolasek, M., Peng, H., Nicolazzi, W., Molnár, G., Chumakov, A.I., Salmon, L., Bousseksou, A.: Lattice dynamics in spin-crossover nanoparticles through nuclear inelastic scattering. Phys. Rev. B. (2015). https://doi.org/10.1103/PhysRevB.91.024422