Dòng chảy năng lượng dao động qua các giao diện heme–cytochrome c và cytochrome c–nước

Theoretical Chemistry Accounts - Tập 133 - Trang 1-10 - 2014
Johnson K. Agbo1, Yao Xu2, Ping Zhang3, John E. Straub3, David M. Leitner2
1Department of Chemistry and Physics, Coastal Carolina University, Conway, USA
2Department of Chemistry and Chemical Physics Program, University of Nevada, Reno, USA
3Department of Chemistry, Boston University, Boston, USA

Tóm tắt

Chúng tôi nghiên cứu sự chuyển giao năng lượng dao động qua các giao diện heme–protein và protein–dung môi của cytochrome c, sử dụng các phương pháp cổ điển, nửa cổ điển và lượng tử khi thích hợp. Để định hình dòng năng lượng qua giao diện giữa heme và phần còn lại của cytochrome c, chúng tôi tính toán bản đồ giao tiếp cho protein trong cấu trúc tự nhiên của nó cũng như hai cấu trúc với Met80 tách rời khỏi heme tại 300 K. Phản ứng với năng lượng thừa trong heme được trung gian hóa bởi các liên kết covalent và liên kết hydro với heme, cũng như một số tương tác không gian, bao gồm cả những tương tác liên quan đến Met80 đã tách rời. Quan sát này gợi ý rằng không có cổ chai dòng năng lượng giữa heme và Met80 có thể cản trở động học tái gắn kết tại 300 K. Chúng tôi xem xét khả năng có thêm các cổ chai đối với dòng năng lượng bằng cách tính toán sự phụ thuộc nhiệt độ của ngưỡng ergodicity trong hệ thống imidazole-ligated Fe-porphyrin, cấu thành lõi của phức hợp heme–histidine. Ngưỡng ergodic mà chúng tôi tính toán theo cơ học lượng tử tương ứng với nhiệt độ khoảng 140 K. Chúng tôi cũng đề cập đến dòng chảy năng lượng dao động thừa từ protein đến dung môi. Chúng tôi tính toán độ dẫn nhiệt biên giữa cytochrome c và nước một cách nửa cổ điển trên một loạt nhiệt độ và phát hiện ra rằng giao diện protein–nước không gây ra trở ngại lớn hơn đối với dòng chảy nhiệt so với chính protein.

Từ khóa

#heo #cytochrome c #dòng năng lượng dao động #tương tác giao diện #năng lượng thừa #dẫn nhiệt

Tài liệu tham khảo

Leitner DM, Straub JE (2009) Proteins: energy, heat and signal flow. Taylor and Francis Press, New York Smock RG, Gierasch LM (2009) Sending signals dynamically. Science 324:198–203 Fujisaki H, Straub JE (2005) Vibrational energy relaxation in proteins. Proc Natl Acad Sci (USA) 102:7626–7631 Leitner DM (2008) Energy flow in proteins. Ann Rev Phys Chem 59:233–259 Gunasekaran K, Ma B, Nussinov R (2004) Is allostery an intrinsic property of all dynamic proteins? Proteins Struct Func Bioinform 57:433–443 Nussinov R, Tsai C-J (2012) Allostery in disease and in drug discovery. Cell 153:293–305 Agarwal PK (2005) Role of protein dynamics in reaction rate enhancement by enzymes. J Am Chem Soc 127:15248–15256 Fang C, Frontiera RR, Tran R, Mathies RA (2009) Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy. Nature 462:200–205 Buchli B, Waldauer SA, Walser R, Donten ML, Pfister R, Bloechliger N, Steiner S, Caflisch A, Zerbe O, Hamm P (2013) Kinetic response of a photoperturbed allosteric protein. Proc Natl Acad Sci USA 110:11725–11730 Nagy AM, Raicu V, Miller RJD (2005) Nonlinear optical studies of heme protein dynamics: implications for proteins as hybrid states of matter. Biochim Biophys Acta 1749:148–172 Sagnella DE, Straub JE, Jackson TA, Lim M, Anfinrud PA (1999) Vibrational population relaxation of carbon monoxide in the heme pocket of carbonmonoxy myoglobin: comparison of time-resolved mid-IR absorbance experiments and molecular dynamics simulations. Proc Natl Acad Sci USA 96:14324–14329 Henry ER, Eaton WA, Hochstrasser RM (1986) Molecular dynamics simulations of cooling in laser-excited heme proteins. Proc Natl Acad Sci USA 83:8982–8986 Lian T, Locke B, Kholodenko Y, Hochstrasser RM (1994) Energy flow from solute to solvent probed by femtosecond ir spectroscopy: malachite green and heme protein solutions. J Phys Chem 98:11648–11656 Gnanasekaran R, Agbo JK, Leitner DM (2011) Communication maps computed for homodimeric hemoglobin: computational study of water-mediated energy transport in proteins. J Chem Phys 135:065103 Champion PM (2005) Following the flow of energy in biomolecules. Science 310:980–982 Sagnella DE, Straub JE (2001) Directed energy “funneling” mechanism for heme cooling following ligand photolysis or direct excitation in solvated carbonmonoxy myoglobin. J Phys Chem B 105:7057–7063 Takayanagi M, Okumura H, Nagaoka M (2007) Anisotropic structural relaxation and its correlation with the excess energy diffusion in the incipient process of photodissociated MbCO: high-resolution analysis via ensemble perturbation method. J Phys Chem B 111:864–869 Nagaoka M, Yu I, Takayanagi M (2009) Energy flow analysis in proteins via ensemble molecular dynamics simulations: time-resolved vibrational analysis and surficial Kirkwood-Buff Theory. In: Leitner DM, Straub JE (eds) Proteins: energy, heat and signal flow. Taylor & Francis Group, CRC Press, Boca Raton, pp 169–196 Mizutani Y, Kitagawa T (1997) Direct observation of cooling of heme upon photodissociation of carbonmonoxy myoglobin. Science 278:443–446 Koyama M, Neya S, Mizutani Y (2006) Role of heme propionates of myoglobin in vibrational energy relaxation. Chem Phys Lett 430:404–408 Sato A, Mizutani Y (2005) Picosecond structural dynamics of myoglobin following photodissociation of carbon monoxide as revealed by ultraviolet time-resolved resonance Raman spectroscopy. Biochem 44:14709–14714 Ye X, Demidov A, Champion PM (2002) Measurements of the photodissociation quantum yields of MbNO and MbO2 and the vibrational relaxation of the six-coordinate heme species. J Am Chem Soc 124:5914–5924 Ow Y-LP, Green DR, Hao Z, Mak TW (2008) Cytochrome c: functions beyond respiration. Nat Rev Mol Cell Biol 9:532–542 Vos MH (2008) Ultrafast dynamics of ligands within heme proteins. Biochim Biophys Acta 1777:15–31 Zang C, Stevens JA, Link JJ, Guo L, Wang L, Zhong D (2009) Ultrafast proteinquake dynamics in cytochrome c. J Am Chem Soc 131:2846–2852 Fujii N, Mizuno M, Mizutani Y (2011) Direct observation of vibrational energy flow in cytochrome c. J Phys Chem B 115:13057–13064 Zhang P, Malolepsza E, Straub JE (2012) Dynamics of methionine ligand rebinding in cytochrome c. J Phys Chem B 116:6980–6990 Zhang P, Ahn SW, Straub JE (2013) “Strange kinetics” in the temperature dependence of methionine ligand rebinding dynamics in cytochrome c. J Phys Chem B 117:7190–7202 Bu L, Straub JE (2003) Simulating vibrational energy flow in proteins: relaxation rate and mechanism for heme cooling in cytochrome c. J Phys Chem B 107:12339–12345 Zhang Y, Fujisaki H, Straub JE (2009) Mode specific vibrational energy relaxation of amide I and II modes in N-methylacetamide/water clusters: the intra- and inter-molecular energy transfer mechanisms. J Phys Chem A 113:3051–3060 Zhang Y, Fujisaki H, Straub JE (2009) Direct evidence for mode-specific vibrational energy relaxation from quantum time-dependent perturbation theory. I. Five-coordinate ferrous iron porphydin model. J Chem Phys 130:025102 Leitner DM (2001) Vibrational energy transfer in helices. Phys Rev Lett 87:188102 Leitner DM, Wolynes PG (1996) Statistical properties of localized vibrational eigenstates. Chem Phys Lett 258:18–24 Leitner DM, Wolynes PG (1997) Vibrational mixing and energy flow in polyatomic molecules: quantitative prediction using local random matrix theory. J Phys Chem A 101:541–548 Keshavamurthy S (2013) Scaling perspective on intramolecular vibrational energy flow: analogies, insights and challenges. Adv Chem Phys 153:43–110 Semparithi A, Keshavamurthy S (2006) Intramolecular vibrational energy redistributions as diffusion in state space: classical-quantum correspondence. J Chem Phys 125:141101 Leitner DM, Gruebele M (2008) A quantum model of restricted vibrational energy flow on the way to the transition state in unimolecular reactions. Mol Phys 106:433–442 Gruebele M, Bigwood R (1998) Molecular vibrational energy flow: beyond the golden rule. Int Rev Phys Chem 17:91–145 Bu L, Straub JE (2003) Vibrational energy relaxation of ‘tailored’ hemes in myoglobin following ligand photolysis supports energy funneling mechanism of heme ‘cooling’. J Phys Chem B 107:10634–10639 Lervik A, Bresme F, Kjelstrup S, Bedeaux D, Rubi JM (2010) Heat transfer in protein–water interfaces. Phys Chem Chem Phys 12:1610–1617 Leitner DM (2013) Thermal boundary conductance and rectification in molecules. J Phys Chem B 117:12820–12828 Xu Y, Leitner DM (2014) Vibrational energy flow through the green fluorescent protein water interface: communication maps and thermal boundary conductance. J Phys Chem B. doi:10.1021/jp412141z Leitner DM (2009) Frequency resolved communication maps for proteins and other nanoscale materials. J Chem Phys 130:195101 Berne BJ, Borkovec M, Straub JE (1988) Classical and modern methods in reaction rate theory. J Phys Chem 92:3711–3725 Leitner DM (2005) Heat transport in molecules and reaction kinetics: the role of quantum energy flow and localization. Adv Chem Phys 130B:205–256 Komatsuzaki T, Baba A, Kawai S, Toda M, Straub JE, Berry RS (2011) Ergodic problems for real complex systems in chemical physics. Adv Chem Phys 145:171–220 Leitner DM, Matsunaga Y, Li C-B, Komatsuzaki T, Shojiguchi A, Toda M (2011) Non-brownian phase space dynamics of molecules, the nature of their vibrational states, and non-RRKM kinetics. Adv Chem Phys 145:83–122 Li CB, Matsunaga Y, Toda M, Komatsuzaki T (2005) Phase space reaction network on a multisaddle energy landscape: HCN isomerization. J Chem Phys 123:184301 Shojiguchi A, Li CB, Komatsuzaki T, Toda M (2007) Fractional behavior in multi-dimensional Hamiltonian systems describing reactions. Phys Rev E 76:056205 Toda M (2005) Global aspects of chemical reactions in multidimensional phase space. Adv Chem Phys 130A:337–399 Ezra GS, Martens CC, Fried LE (1987) Semiclassical quantization of polyatomic molecules: some recent developments. J Phys Chem 91:3721–3730 Uzer T (1991) Theories of intramolecular vibrational energy transfer. Phys Rep 199(2):73–146 Keshavamurthy S, Ezra GS (1997) Eigenstate assignments and the quantum-classical correspondence for highly-excited vibrational states of the Baggot H2O Hamiltonian. J Chem Phys 107:156–179 Leitner DM, Wolynes PG (1996) Vibrational relaxation and energy localization in polyatomics: effects of high-order resonances on flow rates and the quantum ergodicity transition. J Chem Phys 105:11226–11236 Logan DE, Wolynes PG (1990) Quantum localization and energy flow in many-dimensional Fermi resonant systems. J Chem Phys 93:4994–5012 Lervik A, Bresme F, Kjelstrup S (2009) Heat transfer in soft nanoscale interfaces: the influence of interface curvature. Soft Matter 5:2407–2414 Nguyen PH, Park SM, Stock G (2010) Nonequilibrium molecular dynamics simulation of the energy transfer through a peptide helix. J Chem Phys 132:025102 Nguyen PH, Hamm P, Stock G (2009) Nonequilibrium molecular dynamics simulation of photoinduced energy flow in peptides: theory meets experiment. In: Leitner DM, Straub JE (eds) Proteins: energy, heat and signal flow. Taylor & Francis Group, CRC Press, Boca Raton, pp 149–168 Yu X, Leitner DM (2003) Vibrational energy transfer and heat conduction in a protein. J Phys Chem B 107:1698–1707 Yu X, Leitner DM (2005) Heat flow in proteins: computation of thermal transport coefficients. J Chem Phys 122:054902 Botan V, Backus EHG, Pfister R, Moretto A, Crisma M, Toniolo C, Nguyen PH, Stock G, Hamm P (2007) Energy transport in peptide helices. Proc Natl Acad Sci USA 104:12749–12754 Kholodenko Y, Volk M, Gooding E, Hochstrasser RM (2000) Energy dissipation and relaxation processes in deoxymyoglobin after photoexcitation in the Soret region. Chem Phys 259:71–87 Helbing J, Devereux M, Nienhaus K, Nienhaus GU, Hamm P, Meuwly M (2012) Temperature dependence of the heat diffusivity of proteins. J Phys Chem A 116:2620–2628 Müller-Werkmeister HM, Bredenbeck J (2014) A donor-acceptor pair for the real time study of vibrational energy transfer in proteins. Phys Chem Chem Phys 16:3261–3266 Hopkins PE (2013) Thermal transport across solid interfaces with nanoscale imperfections: effects of roughness, disorder, dislocations and bonding on thermal boundary conductance (Review Article). ISRN Mech Eng, 2013: 682586 Buldum A, Leitner DM, Ciraci S (1999) Thermal conduction through a molecule. Europhys Lett 47:208–212 Segal D, Nitzan A, Hänggi P (2003) Thermal conductance through molecular wires. J Chem Phys 119:6840–6855 Leitner DM, Wolynes PG (2000) Heat flow through an insulating nanocrystal. Phys Rev E 61:2902–2908 Allen PB, Feldman JL (1993) Thermal conductivity of disordered harmonic solids. Phys Rev B 48:12581–12588 Xu Y, Leitner DM (2014) Communication maps of vibrational energy transport in photoactive yellow protein. J Phys Chem A. doi:10.1021/jp411281y Ishikura T, Yamato T (2006) Energy transfer pathways relevant for long-range intramolecular signaling of photosensory protein revealed by microscopic energy conductivity analysis. Chem Phys Lett 432:533–537 Ota N, Agard DA (2005) Intramolecular signaling pathways revealed by modeling anisotropic thermal diffusion. J Mol Biol 351:345–354 Gnanasekaran R, Xu Y, Leitner DM (2010) Dynamics of water clusters confined in proteins: a molecular dynamics simulation study of interfacial waters in a dimeric hemoglobin. J Phys Chem B 114:16989–16996 Yu X, Leitner DM (2003) Anomalous diffusion of vibrational energy in proteins. J Chem Phys 119:12673–12679 Yu X, Leitner DM (2006) Thermal conductivity computed for vitreous silica and methyl-doped silica above the plateau. Phys Rev B 74:184305 Swartz ET, Pohl RO (1989) Thermal boundary resistance. Rev Mod Phys 61:605–668 Yu X, Leitner DM (2005) Thermal transport coefficients for liquid and glassy water computer from a harmonic aqueous glass. J Chem Phys 123:104503 Bigwood R, Gruebele M, Leitner DM, Wolynes PG (1998) The vibrational energy flow transition in organic molecules: theory meets experiment. Proc Natl Acad Sci USA 95:5960–5967 Agbo JK, Leitner DM, Myshakin EM, Jordan KD (2007) Quantum energy flow and the kinetics of water shuttling between hydrogen bonding sites on trans-formanilide (TFA). J Chem Phys 127:064315 Acharya H, Mozdzierz NJ, Keblinski P, Garde S (2012) How chemistry, nanoscale roughness, and the direction of heat flow affect thermal conductance of solid–water interfaces. Ind Eng Chem Res 51:1767–1773 Agbo JK, Gnanasekaran R, Leitner DM (2014) Communication maps: exploring energy transport through proteins and water. Isr J Chem. doi:10.1002/ijch.201300139 Volkov AM, vanNuland NAJ (2012) Electron transfer interactome of cytochrome c. PLoS Comput Biol 8:e1002807