Vibration frequency analysis of an electrically-actuated microbeam resonator accounting for thermoelastic coupling effects

Pierpaolo Belardinelli1, Stefano Lenci1, Lucio Demeio2
1DICEA, Polytechnic University of Marche, Ancona, Italy
2DIISM, Polytechnic University of Marche, Ancona, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Clark T, Nguyen C (1995) Micromechanical resonators for oscillators and filters. In: 1995 IEEE proceedings of the ultrasonics symposium, 1995, vol 1, pp 489–499

Luo H, Zhang G, Carley L, Fedder G (2002) A post-CMOS micromachined lateral accelerometer. J Microelectromech Syst 11(3):188–195

Rhoads J, Shaw S, Turner K, Moehlis J, DeMartini B, Zhang W (2006) Generalized parametric resonance in electrostatically actuated microelectromechanical oscillators. J Sound Vib 296(4–5):797–829

Nayfeh AH, Younis MI (2004) A new approach to the modeling and simulation of flexible microstructures under the effect of squeeze-film damping. J Micromech Microeng 14(2):170–181

Rhoads J, Shaw S, Turner KL (2010) Nonlinear dynamics and its applications in micro- and nanoresonators. J Dyn Syst Meas Control 132(3). doi: 10.1115/1.4001333

Younis MI (2011) MEMS linear and nonlinear statics and dynamics, microsystems, vol 20. Springer, New York

Belardinelli P, Brocchini M, Demeio L, Lenci S (2013) Dynamical characteristics of an electrically actuated microbeam under the effects of squeeze-film and thermoelastic damping. Int J Eng Sci 69:16–32

Zener C (1937) Internal friction in solids. I. Theory of internal friction in reeds. Phys Rev 52:230–235

Zener C (1938) Internal friction in solids II. General theory of thermoelastic internal friction. Phys Rev 53:90–99

Lifshitz R, Roukes ML (2000) Thermoelastic damping in micro- and nanomechanical systems. Phys Rev B 61(8):5600–5609

De SK, Aluru NR (2006) Theory of thermoelastic damping in electrostatically actuated microstructures. Phys Rev B 74:144305-1–144305-13

Ignaczak J (1981) Linear dynamic thermoelasticity: a survey. Shock Vib Dig 13(9):3–8

Green A, Lindsay K (1972) Thermoelasticity. J Elast 2(1):1–7

Nowacki W (1975) Dynamic problems of thermoelasticity. Noordhoff, Leyden

Awrejcewicz J, Krysko V (2003) Nonclassical thermoelastic problems in nonlinear dynamics of shells: applications of the Bubnov–Galerkin and finite difference numerical methods. Physics and astronomy online library. Springer, Berlin

Chandrasekharaiah DS (1986) Thermoelasticity with second sound: a review. Appl Mech Rev 39(3):355–376

Lord HW, Shulman Y (1967) A generalized dynamical theory of thermoelasticity. J Mech Phys Solids 15(5):299–309

Sharma JN (2011) Thermoelastic damping and frequency shift in micro/nanoscale anisotropic beams. J Therm Stress 34(7):650–666

Sun Y, Fang D, Soh AK (2006) Thermoelastic damping in micro-beam resonators. Int J Solids Struct 43(10):3213–3229

Krysko V, Awrejcewicz J, Kutepov I, Zagniboroda N, Papkova I, Serebryakov A, Krysko A (2013) Chaotic dynamics of flexible beams with piezoelectric and temperature phenomena. Phys Lett A 377(34–36):2058

Mestrom R, Fey R, van Beek J, Phan K, Nijmeijer H (2008) Modelling the dynamics of a MEMS resonator: simulations and experiments. Sens Actuators A 142(1):306–315

Zook JD, Burns DW, Guckel H, Sniegowski JJ, Engelstad RL, Feng Z (1992) Characteristics of polysilicon resonant microbeams. Sens Actuators A 35(1):51–59

Legtenberg R, Tilmans H (1994) Electrostatically driven vacuum-encapsulated polysilicon resonators. Part I. Design and fabrication. Sens Actuators A 45(1):57–66

Abdel Rahman EM, Younis MI, Nayfeh AH (2002) Characterization of the mechanical behavior of an electrically actuated microbeam. J Micromech Microeng 12(6):759–766

Najar F, Choura S, El-Borgi S, Abdel-Rahman EM, Nayfeh AH (2005) Modeling and design of variable-geometry electrostatic microactuators. J Micromech Microeng 15(3):419–429

Lam D, Yang F, Chong A, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51(8):1477–1508

Belardinelli P, Lenci S, Brocchini M (2014) Modeling and analysis of an electrically actuated microbeam based on non-classical beam theory. J Comput Nonlinear Dyn 9(3):031016

Rezazadeh G, Vahdat A, Tayefeh-rezaei S, Cetinkaya C (2012) Thermoelastic damping in a micro-beam resonator using modified couple stress theory. Acta Mech 223(6):1137–1152

Ghayesh MH, Farokhi H, Amabili M (2013) Nonlinear behaviour of electrically actuated MEMS resonators. Int J Eng Sci 71:137–155

Goldstein H (1980) Classical mechanics Addison-Wesley, Boston

Awrejcewicz J (2012) Classical mechanics: kinematics and statics. In: Advances in mechanics and mathematics. Springer, Berlin

Batra RC, Porfiri M, Spinello D (2008) Vibrations of narrow microbeams predeformed by an electric field. J Sound Vib 309(35):600–612

van der Meijs N, Fokkema J (1984) VLSI circuit reconstruction from mask topology. Integr VLSI J 2(2):85–119

Kacem N, Baguet S, Hentz S, Dufour R (2011) Computational and quasi-analytical models for non-linear vibrations of resonant MEMS and NEMS sensors. Int J Non-Linear Mech 46(3):532–542

Nayfeh AH, Pai PF (2004) Linear and nonlinear structural mechanics. Wiley, New York

Hetnarski R, Eslami MR (2009) Thermal stresses—advanced theory and applications. Springer, New York

Belardinelli P, Lenci S, Demeio L (2014) A comparison of different semi-analytical techniques to determine the nonlinear oscillations of a slender microbeam. Meccanica 49(8):1821–1831

Palmer HB (1937) The capacitance of a parallel-plate capacitor. Trans Am Inst Electr Eng 56(3):363–366

Inman DJ (2007) Engineering vibration. Prentice Hall PTR, Upper Saddle River, New Jersey

Nayfeh A, Younis M, Abdel-Rahman E (2005) Reduced-order models for MEMS applications. Nonlinear Dyn 41(1–3):211–236

Younis MI, Abdel-Rahman EM, Nayfeh AH (2003) A reduced-order model for electrically actuated microbeam-based MEMS. J Microelectromech Syst 12(5):672–680

Nayfeh D, Mook AH (1995) Nonlinear oscillations. Wiley, New York