Vibration frequency analysis of an electrically-actuated microbeam resonator accounting for thermoelastic coupling effects
Tóm tắt
Từ khóa
Tài liệu tham khảo
Clark T, Nguyen C (1995) Micromechanical resonators for oscillators and filters. In: 1995 IEEE proceedings of the ultrasonics symposium, 1995, vol 1, pp 489–499
Luo H, Zhang G, Carley L, Fedder G (2002) A post-CMOS micromachined lateral accelerometer. J Microelectromech Syst 11(3):188–195
Rhoads J, Shaw S, Turner K, Moehlis J, DeMartini B, Zhang W (2006) Generalized parametric resonance in electrostatically actuated microelectromechanical oscillators. J Sound Vib 296(4–5):797–829
Nayfeh AH, Younis MI (2004) A new approach to the modeling and simulation of flexible microstructures under the effect of squeeze-film damping. J Micromech Microeng 14(2):170–181
Rhoads J, Shaw S, Turner KL (2010) Nonlinear dynamics and its applications in micro- and nanoresonators. J Dyn Syst Meas Control 132(3). doi: 10.1115/1.4001333
Younis MI (2011) MEMS linear and nonlinear statics and dynamics, microsystems, vol 20. Springer, New York
Belardinelli P, Brocchini M, Demeio L, Lenci S (2013) Dynamical characteristics of an electrically actuated microbeam under the effects of squeeze-film and thermoelastic damping. Int J Eng Sci 69:16–32
Zener C (1937) Internal friction in solids. I. Theory of internal friction in reeds. Phys Rev 52:230–235
Zener C (1938) Internal friction in solids II. General theory of thermoelastic internal friction. Phys Rev 53:90–99
Lifshitz R, Roukes ML (2000) Thermoelastic damping in micro- and nanomechanical systems. Phys Rev B 61(8):5600–5609
De SK, Aluru NR (2006) Theory of thermoelastic damping in electrostatically actuated microstructures. Phys Rev B 74:144305-1–144305-13
Nowacki W (1975) Dynamic problems of thermoelasticity. Noordhoff, Leyden
Awrejcewicz J, Krysko V (2003) Nonclassical thermoelastic problems in nonlinear dynamics of shells: applications of the Bubnov–Galerkin and finite difference numerical methods. Physics and astronomy online library. Springer, Berlin
Chandrasekharaiah DS (1986) Thermoelasticity with second sound: a review. Appl Mech Rev 39(3):355–376
Lord HW, Shulman Y (1967) A generalized dynamical theory of thermoelasticity. J Mech Phys Solids 15(5):299–309
Sharma JN (2011) Thermoelastic damping and frequency shift in micro/nanoscale anisotropic beams. J Therm Stress 34(7):650–666
Sun Y, Fang D, Soh AK (2006) Thermoelastic damping in micro-beam resonators. Int J Solids Struct 43(10):3213–3229
Krysko V, Awrejcewicz J, Kutepov I, Zagniboroda N, Papkova I, Serebryakov A, Krysko A (2013) Chaotic dynamics of flexible beams with piezoelectric and temperature phenomena. Phys Lett A 377(34–36):2058
Mestrom R, Fey R, van Beek J, Phan K, Nijmeijer H (2008) Modelling the dynamics of a MEMS resonator: simulations and experiments. Sens Actuators A 142(1):306–315
Zook JD, Burns DW, Guckel H, Sniegowski JJ, Engelstad RL, Feng Z (1992) Characteristics of polysilicon resonant microbeams. Sens Actuators A 35(1):51–59
Legtenberg R, Tilmans H (1994) Electrostatically driven vacuum-encapsulated polysilicon resonators. Part I. Design and fabrication. Sens Actuators A 45(1):57–66
Abdel Rahman EM, Younis MI, Nayfeh AH (2002) Characterization of the mechanical behavior of an electrically actuated microbeam. J Micromech Microeng 12(6):759–766
Najar F, Choura S, El-Borgi S, Abdel-Rahman EM, Nayfeh AH (2005) Modeling and design of variable-geometry electrostatic microactuators. J Micromech Microeng 15(3):419–429
Lam D, Yang F, Chong A, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51(8):1477–1508
Belardinelli P, Lenci S, Brocchini M (2014) Modeling and analysis of an electrically actuated microbeam based on non-classical beam theory. J Comput Nonlinear Dyn 9(3):031016
Rezazadeh G, Vahdat A, Tayefeh-rezaei S, Cetinkaya C (2012) Thermoelastic damping in a micro-beam resonator using modified couple stress theory. Acta Mech 223(6):1137–1152
Ghayesh MH, Farokhi H, Amabili M (2013) Nonlinear behaviour of electrically actuated MEMS resonators. Int J Eng Sci 71:137–155
Goldstein H (1980) Classical mechanics Addison-Wesley, Boston
Awrejcewicz J (2012) Classical mechanics: kinematics and statics. In: Advances in mechanics and mathematics. Springer, Berlin
Batra RC, Porfiri M, Spinello D (2008) Vibrations of narrow microbeams predeformed by an electric field. J Sound Vib 309(35):600–612
van der Meijs N, Fokkema J (1984) VLSI circuit reconstruction from mask topology. Integr VLSI J 2(2):85–119
Kacem N, Baguet S, Hentz S, Dufour R (2011) Computational and quasi-analytical models for non-linear vibrations of resonant MEMS and NEMS sensors. Int J Non-Linear Mech 46(3):532–542
Hetnarski R, Eslami MR (2009) Thermal stresses—advanced theory and applications. Springer, New York
Belardinelli P, Lenci S, Demeio L (2014) A comparison of different semi-analytical techniques to determine the nonlinear oscillations of a slender microbeam. Meccanica 49(8):1821–1831
Palmer HB (1937) The capacitance of a parallel-plate capacitor. Trans Am Inst Electr Eng 56(3):363–366
Inman DJ (2007) Engineering vibration. Prentice Hall PTR, Upper Saddle River, New Jersey
Nayfeh A, Younis M, Abdel-Rahman E (2005) Reduced-order models for MEMS applications. Nonlinear Dyn 41(1–3):211–236
Younis MI, Abdel-Rahman EM, Nayfeh AH (2003) A reduced-order model for electrically actuated microbeam-based MEMS. J Microelectromech Syst 12(5):672–680