Viability of greenhouse gas removal via artificial addition of volcanic ash to the ocean
Tài liệu tham khảo
Arthur, 1998, Organic carbon accumulation and preservation in surface sediments on the Peru margin, Chem. Geol., 152, 273, 10.1016/S0009-2541(98)00120-X
Bastin, 2019, The global tree restoration potential, Science, 365, 76, 10.1126/science.aax0848
Bohlen, 2011, Benthic nitrogen cycling traversing the Peruvian oxygen minimum zone, Geochim. Cosmochim. Acta, 75, 6094, 10.1016/j.gca.2011.08.010
Boyd, 2007, Mesoscale iron enrichment experiments 1993-2005: synthesis and future directions, Science, 315, 612, 10.1126/science.1131669
Boyd, 2000, A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization, Nature, 407, 695, 10.1038/35037500
Brown, 2017, The Effects of Temperature and Hydrostatic Pressure on Metal Toxicity: Insights into Toxicity in the Deep Sea, Environ. Sci. Technol., 51, 10222, 10.1021/acs.est.7b02988
Burdige, 2007, Preservation of organic matter in marine sediments: Controls, mechanisms, and an imbalance in sediment organic carbon budgets?, Chem. Rev., 107, 467, 10.1021/cr050347q
Coccioni, 1994, K-T boundary extinction: geologically instantaneous or gradual event? Evidence from deep-sea benthic foraminifera, Geology, 22, 779, 10.1130/0091-7613(1994)022<0779:KTBEGI>2.3.CO;2
Dale, 2015, Organic carbon production, mineralisation and preservation on the Peruvian margin, Biogeosciences, 12, 1537, 10.5194/bg-12-1537-2015
Duggen, 2007, Subduction zone volcanic ash can fertilize the surface ocean and stimulate phytoplankton growth: Evidence from biogeochemical experiments and satellite data, Geophys. Res. Lett., 34, 10.1029/2006GL027522
Duggen, 2010, The role of airborne volcanic ash for the surface ocean biogeochemical iron-cycle: a review, Biogeosciences, 10.5194/bg-7-827-2010
Dunne, 2007, A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor, Global Biogeochem. Cycles, 21
Eisenhour, 2009, Bentonite and its impact on modern life, Elements, 10.2113/gselements.5.2.83
Frogner Kockum, 2006, A diverse ecosystem response to volcanic aerosols, Chem. Geol., 231, 57, 10.1016/j.chemgeo.2005.12.008
Frogner, 2001, Fertilizing potential of volcanic ash in ocean surface water, Geology, 29, 487, 10.1130/0091-7613(2001)029<0487:FPOVAI>2.0.CO;2
Ghouleh, 2017, Production of carbonate aggregates using steel slag and carbon dioxide for carbon-negative concrete, J. CO2 Util., 18, 125, 10.1016/j.jcou.2017.01.009
Gieskes, 1983, The chemistry of interstitial waters of deep sea sediments: interpretation of deep sea drilling data, 221
Gudmundsson, 2012, Ash generation and distribution from the April-May 2010 eruption of Eyjafjallajökull, Iceland. Sci. Rep., 2, 572, 10.1038/srep00572
Haeckel, 2001, The impact of the 1991 Mount Pinatubo tephra fallout on the geochemical environment of the deep-sea sediments in the South China Sea, Earth Planet. Sci. Lett., 193, 151, 10.1016/S0012-821X(01)00496-4
Hamme, 2010, Volcanic ash fuels anomalous plankton bloom in subarctic northeast Pacific, Geophys. Res. Lett., 37, 10.1029/2010GL044629
Hartnett, 1998, Influence of oxygen exposure time on organic carbon preservation in continental margin sediments, Nature, 391, 572, 10.1038/35351
Haszeldine, 2018, Negative emissions technologies and carbon capture and storage to achieve the Paris Agreement Commitments, Philos. Trans. R. Soc. A Math. Eng. Sci., 376
Hembury, 2012, Uptake of dissolved oxygen during marine diagenesis of fresh volcanic material, Geochim. Cosmochim. Acta, 84, 353, 10.1016/j.gca.2012.01.017
Hess, 1996, Deep-sea benthic foraminiferal recolonization of the 1991 Mt. Pinatubo ash layer in the South China Sea, Mar. Micropaleontol., 28, 171, 10.1016/0377-8398(95)00080-1
Hess, 2001, Monitoring the recolonization of the Mt Pinatubo 1991 ash layer by benthic foraminifera, Mar. Micropaleontol., 43, 119, 10.1016/S0377-8398(01)00025-1
Hoffmann, 2012, Influence of trace metal release from volcanic ash on growth of Thalassiosira pseudonana and Emiliania huxleyi, Mar. Chem., 132–133, 28, 10.1016/j.marchem.2012.02.003
Homoky, 2011, Iron and manganese diagenesis in deep sea volcanogenic sediments and the origins of pore water colloids, Geochim. Cosmochim. Acta, 75, 5032, 10.1016/j.gca.2011.06.019
IPCC, 2018, Summary for Policymakers
Jones, 2008, Rapid releases of metal salts and nutrients following the deposition of volcanic ash into aqueous environments, Geochim. Cosmochim. Acta, 72, 3661, 10.1016/j.gca.2008.05.030
Kheshgi, 1995, Sequestering atmospheric carbon dioxide by increasing ocean alkalinity, Energy, 20, 915, 10.1016/0360-5442(95)00035-F
Kuhnt, 2005, The impact of the 1991 Mt. Pinatubo eruption on deep-sea foraminiferal communities: a model for the Cretaceous–Tertiary (K/T) boundary?, Palaeogeogr. Palaeoclimatol. Palaeoecol., 224, 83, 10.1016/j.palaeo.2005.03.042
Lalonde, 2012, Preservation of organic matter in sediments promoted by iron, Nature, 483, 198, 10.1038/nature10855
Langmann, 2010, Volcanic ash as fertiliser for the surface ocean, Atmos. Chem. Phys., 10.5194/acp-10-3891-2010
Lin, 2011, Fertilization potential of volcanic dust in the low-nutrient low-chlorophyll western North Pacific subtropical gyre: Satellite evidence and laboratory study, Global Biogeochem. Cycles, 25
Lomax, 2015, Reframing the policy approach to greenhouse gas removal technologies, Energy Policy, 78, 125, 10.1016/j.enpol.2014.10.002
Longman, 2019, The role of tephra in enhancing organic carbon preservation in marine sediments, Earth-Sci. Rev., 10.1016/j.earscirev.2019.03.018
Martin, 1988, Iron deficiency limits phytoplankton growth in the north-east pacific subarctic, Nature, 331, 341, 10.1038/331341a0
Maters, 2017, Controls on iron mobilisation from volcanic ash at low pH: insights from dissolution experiments and Mössbauer spectroscopy, Chem. Geol., 449, 73, 10.1016/j.chemgeo.2016.11.036
Mathers, 2014
Matter, 2016, Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions, Science, 352, 1312, 10.1126/science.aad8132
Mélançon, 2014, Early response of the northeast subarctic Pacific plankton assemblage to volcanic ash fertilization, Limnol. Oceanogr., 59, 55, 10.4319/lo.2014.59.1.0055
Murray, 2018, Diagenesis in tephra-rich sediments from the Lesser Antilles Volcanic Arc: pore fluid constraints, Geochim. Cosmochim. Acta, 228, 119, 10.1016/j.gca.2018.02.039
Olgun, 2011, Surface ocean iron fertilization: The role of airborne volcanic ash from subduction zone and hot spot volcanoes and related iron fluxes into the Pacific Ocean, Global Biogeochem. Cycles, 25, 10.1029/2009GB003761
Pabortsava, 2017, Carbon sequestration in the deep Atlantic enhanced by Saharan dust, Nat. Geosci., 10, 189, 10.1038/ngeo2899
Pennington, 2006, Primary production in the eastern tropical Pacific: a review, Prog. Oceanogr., 69, 285, 10.1016/j.pocean.2006.03.012
Perrier, 2012, Biotic response to explosive volcanism: Ostracod recovery after Ordovician ash-falls, Palaeogeogr. Palaeoclimatol. Palaeoecol, 365–366, 166, 10.1016/j.palaeo.2012.09.024
Ramage, 2017, The wood from the trees: The use of timber in construction, Renew. Sustain. Energy Rev., 10.1016/j.rser.2016.09.107
Renforth, 2017, Assessing ocean alkalinity for carbon sequestration, Rev. Geophys., 55, 636, 10.1002/2016RG000533
Royal Society, 2018, Greenhouse gas removal, R.Soc. Lond.
Rubin, 2011, Dust- and mineral-iron utilization by the marine dinitrogen-fixer trichodesmium, Nat. Geosci., 4, 529, 10.1038/ngeo1181
Sarmiento, 2006
Schrag, 2013, Authigenic carbonate and the history of the global carbon cycle, Science, 339, 540, 10.1126/science.1229578
Scudder, 2016, Geochemical approaches to the quantification of dispersed volcanic ash in marine sediment, Prog. Earth Planet. Sci., 3, 1, 10.1186/s40645-015-0077-y
Siegenthaler, 1993, Atmospheric carbon dioxide and the ocean, Nature, 10.1038/365119a0
Steffen, 2018, Trajectories of the Earth System in the Anthropocene, Proc. Natl. Acad. Sci., 115, 8252, 10.1073/pnas.1810141115
Tollefson, 2018, IPCC says limiting global warming to 1.5 °C will require drastic action, Nature, 562, 172, 10.1038/d41586-018-06876-2
Uematsu, 2004, Enhancement of primary productivity in the western North Pacific caused by the eruption of the Miyake-jima Volcano, Geophys. Res. Lett., 31, 10.1029/2003GL018790
UNCTAD, 2018
Wall-Palmer, 2011, Explosive volcanism as a cause for mass mortality of pteropods, Mar. Geol., 282, 231, 10.1016/j.margeo.2011.03.001