Vesicular Glutamate Transporter-Dependent Glutamate Release from Astrocytes

Journal of Neuroscience - Tập 24 Số 11 - Trang 2633-2642 - 2004
Vedrana Montana1, Yingchun Ni, Vice Sunjara, Xue Jun Hua, Vladimir Parpura
1Department of Cell Biology and Neuroscience and Center for Nanoscale Science and Engineering, University of California, Riverside, California 92521, USA.

Tóm tắt

Astrocytes exhibit excitability based on variations of their intracellular Ca2+concentrations, which leads to glutamate release, that in turn can signal to adjacent neurons. This glutamate-mediated astrocyte–neuron signaling occurs at physiological intracellular Ca2+levels in astrocytes and includes modulation of synaptic transmission. The mechanism underlying Ca2+-dependent glutamate release from astrocytes is most likely exocytosis, because astrocytes express the protein components of the solubleN-ethyl maleimide-sensitive fusion protein attachment protein receptors complex, including synaptobrevin 2, syntaxin, and synaptosome-associated protein of 23 kDa. Although these proteins mediate Ca2+-dependent glutamate release from astrocytes, it is not well understood whether astrocytes express functional vesicular glutamate transporters (VGLUTs) that are critical for vesicle refilling. Here, we find in cultured and freshly isolated astrocytes the presence of brain-specific Na+-dependent inorganic phosphate cotransporter and differentiation-associated Na+-dependent inorganic phosphate cotransporter that have recently been identified as VGLUTs 1 and 2. Indirect immunocytochemistry showed a punctate pattern of VGLUT immunoreactivity throughout the entire cell body and processes, whereas pharmacological inhibition of VGLUTs abolished mechanically and agonist-evoked Ca2+-dependent glutamate release from astrocytes. Taken together, these data indicate that VGLUTs play a functional role in exocytotic glutamate release from astrocytes.

Từ khóa


Tài liệu tham khảo

10.1046/j.1460-9568.1998.00221.x

1998, J Neurosci, 18, 6822, 10.1523/JNEUROSCI.18-17-06822.1998

2000, J Neurosci, 20, 666, 10.1523/JNEUROSCI.20-02-00666.2000

10.1074/jbc.M104578200

1998, J Neurosci, 18, 8648, 10.1523/JNEUROSCI.18-21-08648.1998

10.1038/34651

10.1038/89490

10.1073/pnas.85.21.7972

10.1074/jbc.M209454200

10.1016/0896-6273(92)90271-E

10.1002/(SICI)1098-1136(19990101)25:1<10::AID-GLIA2>3.0.CO;2-Y

10.1016/S0896-6273(01)00344-0

10.1073/pnas.222546799

10.1002/cne.1037

2002, J Neurosci, 22, 5442, 10.1523/JNEUROSCI.22-13-05442.2002

10.1002/(SICI)1098-1136(199908)27:2<181::AID-GLIA8>3.0.CO;2-9

2001, J Neurosci, 21, RC181, 10.1523/JNEUROSCI.21-22-j0001.2001

2000, Brain Res Mol Brain Res, 83, 34, 10.1016/S0169-328X(00)00194-7

10.1083/jcb.96.5.1374

2000, J Neurosci, 20, 1800, 10.1523/JNEUROSCI.20-05-01800.2000

10.1016/S0006-8993(96)00610-5

10.1046/j.1471-4159.2001.00272.x

10.1002/cne.10129

10.1038/3684

2001, Trends Neurosci, 24, 205

10.1002/1097-4547(20000915)61:6<577::AID-JNR1>3.0.CO;2-T

10.1016/S0197-0186(99)00144-8

2003, J Neurosci, 23, 1580, 10.1523/JNEUROSCI.23-05-01580.2003

10.1002/glia.10162

10.1002/(SICI)1098-1136(199905)26:3<233::AID-GLIA5>3.0.CO;2-2

10.1083/jcb.85.3.890

10.1126/science.8134839

10.1073/pnas.91.12.5607

1995, J Neurosci, 15, 5789, 10.1523/JNEUROSCI.15-08-05789.1995

2003, FASEB J, 17, A457

10.1046/j.1471-4159.2001.t01-1-00200.x

10.1073/pnas.97.15.8629

10.1038/369744a0

10.1016/0014-5793(95)00121-O

10.1016/0014-5793(95)01401-2

2001, J Neurosci, 21, 477, 10.1523/JNEUROSCI.21-02-00477.2001

Peters A, Palay SL, Webster HD (1991) The fine structure of the nervous system, Ed 3. New York: Oxford UP.

10.1016/S0006-8993(01)02290-9

10.1038/83949

10.1016/S0006-3495(00)76468-X

10.1002/(SICI)1097-4695(19991105)41:2<221::AID-NEU5>3.0.CO;2-A

10.1074/jbc.M206738200

2001, J Neurosci, 21, RC182, 10.1523/JNEUROSCI.21-22-j0002.2001

2002, J Neurosci, 22, 142, 10.1523/JNEUROSCI.22-01-00142.2002

2000, J Neurophysiol, 84, 2746, 10.1152/jn.2000.84.6.2746