Very large magnetoresistance in graphene nanoribbons

Nature Nanotechnology - Tập 5 Số 9 - Trang 655-659 - 2010
Jingwei Bai1, Rui Cheng1, Faxian Xiu2, Lei Liao3, Minsheng Wang2, Alexandros Shailos4, Kang L. Wang2, Yu Huang4, Xiangfeng Duan4
1Department of Materials Science and Engineering, University of California, Los Angeles, 90095, California, USA
2Department of Electrical Engineering, University of California, Los Angeles, 90095, California, USA
3Department of Chemistry and Biochemistry, University of California, Los Angeles, 90095, California, USA
4California NanoSystems Institute, University of California, Los Angeles, 90095, California, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954–17961 (1996).

Son, Y. W., Cohen, M. L. & Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006).

Sols, F., Guinea, F. & Neto, A. H. C. Coulomb blockade in graphene nanoribbons. Phys. Rev. Lett. 99, 166803 (2007).

Gunlycke, D., Areshkin, D. A. & White, C. T. Semiconducting graphene nanostrips with edge disorder. Appl. Phys. Lett. 90, 142104 (2007).

Adam, S., Cho, S., Fuhrer, M. S. & Das Sarma, S. Density inhomogeneity driven percolation metal–insulator transition and dimensional crossover in graphene nanoribbons. Phys. Rev. Lett. 101, 046404 (2008).

Stampfer, C. et al. Energy gaps in etched graphene nanoribbons. Phys. Rev. Lett. 102, 056403 (2009).

Han, M. Y., Ozyilmaz, B., Zhang, Y. B. & Kim, P. Energy bandgap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).

Li, X. L., Wang, X. R., Zhang, L., Lee, S. W. & Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008).

Bai, J. W., Duan, X. F. & Huang, Y. Rational fabrication of graphene nanoribbons using a nanowire etch mask. Nano. Lett. 9, 2083–2087 (2009).

Son, Y. W., Cohen, M. L. & Louie, S. G. Half-metallic graphene nanoribbons. Nature 444, 347–349 (2006).

Kim, W. Y. & Kim, K. S. Prediction of very large values of magnetoresistance in a graphene nanoribbon device. Nature Nanotech. 3, 408–412 (2008).

Munoz-Rojas, F., Fernandez-Rossier, J. & Palacios, J. J. Giant magnetoresistance in ultrasmall graphene based devices. Phys. Rev. Lett. 102, 136810 (2009).

Peres, N. M. R., Castro Neto, A. H. & Guinea, F. Dirac fermion confinement in graphene. Phys. Rev. B 73, 241403 (2006).

Peres, N. M. R., Castro Neto, A. H. & Guinea, F. Conductance quantization in mesoscopic graphene. Phys. Rev. B 73, 195411 (2006).

Huang, Y., Chang, C. P. & Lin, M. F. Magnetic and quantum confinement effects on electronic and optical properties of graphene ribbons. Nanotechnology 18, 495401 (2007).

Liu, J., Wright, A. R., Zhang, C. & Ma, Z. Strong terahertz conductance of graphene nanoribbons under a magnetic field. Appl. Phys. Lett. 93, 041106 (2008).

Ritter, C., Makler, S. S. & Latge, A. Energy-gap modulations of graphene ribbons under external fields: a theoretical study. Phys. Rev. B 77, 195443 (2008).

Li, T. S., Huang, Y. C., Chang, S. C., Chang, C. P. & Lin, M. F. Magnetoconductance of graphene nanoribbons. Phil. Mag. 89, 697–709 (2009).

Lin, Y. M., Perebeinos, V., Chen, Z. H. & Avouris, P. Electrical observation of subband formation in graphene nanoribbons. Phys. Rev. B 78, 161409 (2008).

Gallagher, P., Todd, K. & Foldhaber-Gordon, D. Disorder-induced gap behavior in graphene nanoribbons. Phys. Rev. B 81, 115409 (2010).

Han, M. Y., Brant, J. C. & Kim, P. Electron transport in disordered graphene nanoribbons. Phys. Rev. Lett. 104, 056801 (2010).

Ozyilmaz, B., Jarillo-Herrero, P., Efetov, D. & Kim, P. Electronic transport in locally gated graphene nanoconstrictions. Appl. Phys. Lett. 91, 192107 (2007).

Scott Bunch, J. S., Yaish, Y., Brink, M., Bolotin, K. & McEuen, P. L. Coulomb osillations and Hall effect in quasi-2D graphite quantum dots. Nano Lett. 5, 287–290 (2005).

Ponomarenko, L. A. et al. Chaotic Dirac billiard in graphene quantum dots. Science 320, 356–358 (2008).

Cho, S. & Fuhrer, M. S. Charge transport and inhomogeneity near the minimum conductivity point in graphene. Phys. Rev. B 77, 081402 (2008).

Martin, J. et al. Observation of electron–hole puddles in graphene using a scanning single-electron transistor. Nature Phys. 4, 144–148 (2008).

Sahoo, S. et al. Electric field control of spin transport. Nature Phys. 1, 99–102 (2005).

Hamaya, K. et al. Electric-field control of tunneling magnetoresistance effect in a Ni/InAs/Ni quantum-dot spin valve. Appl. Phys. Lett. 91, 022107 (2007).

Martin, I. & Blanter, Y. M. Transport in disordered graphene nanoribbons. Phys. Rev. B 79, 235132 (2009).

Gershenson, M. E., Khavin, Y. B., Mikhalchuk, A. G., Bozler, H. M. & Bogdanov, A. L. Crossover from weak to strong localization in quasi-one-dimensional conductors. Phys. Rev. Lett. 79, 725–728 (1997).

Poumirol, J. M. et al. Edge magneto-fingerprints in disordered graphene nanoribbons. Preprint at arXiv: 1002.4571v1 (2010).

Oostinga, J. B., Sacepe, B., Cracium, M. F. & Morpurgo, A. F. Magneto-transport through graphene nanoribbons. Preprint at arXiv: 1003.2994v1 (2010).