Vertical land motion monitored with satellite radar altimetry and tide gauge along the Texas coastline, USA, between 1993 and 2020
International Journal of Applied Earth Observation and Geoinformation - Tập 117 - Trang 103222 - 2023
Tài liệu tham khảo
Adebisi, 2021, Advances in estimating sea level rise: A review of tide gauge, satellite altimetry and spatial data science approaches, Ocean & Coastal Management, 208, 10.1016/j.ocecoaman.2021.105632
Bertiger, 2020, GipsyX/RTGx, a new tool set for space geodetic operations and research, Adv. Space Res., 66, 469, 10.1016/j.asr.2020.04.015
Blewitt, 2018, Harnessing the GPS data explosion for interdisciplinary science, EOS Trans. Am. Geophys. Union, 99, 485
Bos, 2019
Bos, 2013, Fast error analysis of continuous GNSS observations with missing data, J. Geod., 87, 351, 10.1007/s00190-012-0605-0
Cazenave, 1999, Sea level changes from Topex-Poseidon altimetry and tide gauges, and vertical crustal motions from DORIS, Geophys. Res. Lett., 26, 2077, 10.1029/1999GL900472
Choy, 2017, Uncovering common misconceptions in GNSS Precise Point Positioning and its future prospect, GPS Solut., 21, 13, 10.1007/s10291-016-0545-x
CNES, 2017
De Biasio, 2020, Revisiting vertical land motion and sea level trends in the Northeastern Adriatic Sea using satellite altimetry and tide gauge data, J. Mar. Sci. Eng., 8, 949, 10.3390/jmse8110949
Douglas, 1991, Global sea level rise, J. Geophys. Res.: Oceans, 96, 6981, 10.1029/91JC00064
Douglas, 2000
Etcheverry, 2015, A comparison of the annual cycle of sea level in coastal areas from gridded satellite altimetry and tide gauges, Cont. Shelf Res., 92, 87, 10.1016/j.csr.2014.10.006
E.U. Copernicus Marine Service Information, ., 2022, Global ocean gridded L4 sea surface heights and derived variables reprocessed (1993-ongoing). https://doi.org/10.48670/moi-00148.
Haley, 2022, Land subsidence in the Texas Coastal bend: Locations, rates, triggers, and consequences, Remote Sens., 14, 192, 10.3390/rs14010192
H.G.S.D., 2022
Kasmarek, 2009
Kearns, 2015, Current land subsidence and groundwater level changes in the Houston metropolitan area (2005–2012), J. Surv. Eng., 141, 10.1061/(ASCE)SU.1943-5428.0000147
Khorzad, 1999, Land subsidence along the Texas Gulf Coast due to oil and gas withdrawal, Environ. Geosci., 6, 157, 10.1046/j.1526-0984.1999.08046-22.x
Kuo, 2004, Vertical crustal motion determined by satellite altimetry and tide gauge data in Fennoscandia, Geophys. Res. Lett., 31, 10.1029/2003GL019106
Kutner, 2004
Letetrel, 2015, Estimation of vertical land movement rates along the coasts of the Gulf of Mexico over the past decades, Cont. Shelf Res., 111, 42, 10.1016/j.csr.2015.10.018
Leuliette, 2004, Calibration of TOPEX/Poseidon and jason altimeter data to construct a continuous record of mean sea level change, Mar. Geod., 27, 79, 10.1080/01490410490465193
Matthäus, 1972, On the history of recording tide gauges, Proc. R. Soc. Edinburgh B, 73, 26
McGranahan, 2007, The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones, Environ. Urbanization, 19, 17, 10.1177/0956247807076960
Meyer, 2000
Nerem, 2002, Estimates of vertical crustal motion derived from differences of TOPEX/POSEIDON and tide gauge sea level measurements, Geophys. Res. Lett., 29, 1, 10.1029/2002GL015037
Pujol, 2016, DUACS DT2014: the new multi-mission altimeter data set reprocessed over 20 years, Ocean Sci., 12, 1067, 10.5194/os-12-1067-2016
Pujol, 2019
Qiao, X., Chu, T., Tissot, P., Louis, J., 2021. Land Subsidence with tide Gauge, Radar Altimetry and GNSS: A Case Study at Subsiding Coast in Texas. In: Proceedings of the 34th International Technical Meeting of the Satellite Division of the Institute of Navigation. ION GNSS+ 2021, pp. 3956–3962.
Qiao, 2022, Land subsidence estimation with tide gauge and satellite radar altimetry measurements along the Texas Gulf Coast, USA, IEEE Geosci. Remote Sens. Lett., 10.1109/LGRS.2022.3194108
Qu, 2015, Mapping ground deformation over Houston–Galveston, Texas using multi-temporal InSAR, Remote Sens. Environ., 169, 290, 10.1016/j.rse.2015.08.027
Rezvani, 2021, Estimating vertical land motion and residual altimeter systematic errors using a Kalman-based approach, J. Geophys. Res.: Oceans, 126, 10.1029/2020JC017106
Rezvani, 2022, Vertical deformation and residual altimeter systematic errors around continental Australia inferred from a Kalman-based approach, J. Geod., 96, 96, 10.1007/s00190-022-01680-3
Santamaría-Gómez, 2014, Long-term vertical land motion from double-differenced tide gauge and satellite altimetry data, J. Geod., 88, 207, 10.1007/s00190-013-0677-5
Shu, 2021, Evaluation of historic and operational satellite radar altimetry missions for constructing consistent long-term lake water level records, Hydrol. Earth Syst. Sci., 25, 1643, 10.5194/hess-25-1643-2021
Sweet, 2019
Vignudelli, 2011
Vinogradov, 2010, Annual cycle in coastal sea level from tide gauges and altimetry, J. Geophys. Res.: Oceans, 115
Wang, 2017, Comparisons of OPUS and PPP solutions for subsidence monitoring in the greater Houston area, J. Surv. Eng., 143, 10.1061/(ASCE)SU.1943-5428.0000241
Watson, 2015, Unabated global mean sea-level rise over the satellite altimeter era, Nature Clim. Change, 5, 565, 10.1038/nclimate2635
Wöppelmann, 2016, Vertical land motion as a key to understanding sea level change and variability, Rev. Geophys., 54, 64, 10.1002/2015RG000502
Xu, 2019, Coastal altimetry: A promising technology for the coastal oceanography community
Zilkoski, 2003, The Harris–Galveston coastal subsidence district/national geodetic survey automated global positioning system subsidence monitoring project, 13