Vertical inertial sliding drive for coarse and fine approaches in scanning probe microscopy

Review of Scientific Instruments - Tập 78 Số 3 - 2007
Adam Z. Stieg1, Paul Wilkinson1, James K. Gimzewski1
1University of California-Los Angeles Department of Chemistry and Biochemistry, , Los Angeles, California 90095

Tóm tắt

Mechanisms for controlled approach of a probe tip toward the sample surface are essential in high resolution imaging by scanning probe microscopy (SPM). This work describes the development and performance of an inertial sliding drive capable of translating a relatively large mass (25g) at up to 1mm∕s over 1cm with step sizes of 10–250nm in ambient conditions using various wave forms as measured by fiber optic interferometry. The drive functions independent of orientation with a threshold voltage of less than 15V using a single drive signal. Use of piezotube actuators in a radially symmetric arrangement provides guided motion and minimizes differential thermal expansion between critical components. Controlled translation of the entire scanning component in both ambient and electrochemical scanning tunneling microscopy has been routinely achieved with no evidence of tip crash. This device has been specifically designed for use in in situ SPM applications where stability of the sample and that of the liquid environment are paramount.

Từ khóa


Tài liệu tham khảo

1982, Helv. Phys. Acta, 55, 726, 10.1002/hlca.19820650310

1994, Scanning Probe Microscopy and Spectroscopy: Methods and Applications

1980, J. Electroanal. Chem. Interfacial Electrochem., 107, 205, 10.1016/0368-1874(80)80076-1

1997, Meas. Sci. Technol., 8, 338, 10.1088/0957-0233/8/3/018

1983, Surf. Sci., 126, 236, 10.1016/0039-6028(83)90716-1

1987, Surf. Sci., 181, 145, 10.1016/0039-6028(87)90151-8

1993

1991

1987, Rev. Sci. Instrum., 58, 54, 10.1063/1.1139566

1988, Rev. Sci. Instrum., 59, 368, 10.1063/1.1140206

1988, Rev. Sci. Instrum., 59, 1897, 10.1063/1.1140047

1990, Rev. Sci. Instrum., 61, 965, 10.1063/1.1141450

1992, Rev. Sci. Instrum., 63, 2206, 10.1063/1.1143140

1996, J. Vac. Sci. Technol. B, 14, 827, 10.1116/1.588723

1996, Rev. Sci. Instrum., 67, 2557, 10.1063/1.1147213

1997, Rev. Sci. Instrum., 68, 1455, 10.1063/1.1147951

1997, Rev. Sci. Instrum., 68, 136, 10.1063/1.1147848

2001, Rev. Sci. Instrum., 72, 3552, 10.1063/1.1394181

2003, Rev. Sci. Instrum., 74, 267, 10.1063/1.1524712

2003, Rev. Sci. Instrum., 74, 4945, 10.1063/1.1614872

2004, Rev. Sci. Instrum., 75, 694, 10.1063/1.1646742

2005, Rev. Sci. Instrum., 76, 103705, 10.1063/1.2083147

2005, Rev. Sci. Instrum., 76, 063706, 10.1063/1.1927105

2006, Rev. Sci. Instrum., 77, 043712, 10.1063/1.2194489

1989, Appl. Phys. Lett., 55, 2588, 10.1063/1.101987