Vertical distribution of bird migration between the Baltic Sea and the Sahara
Tóm tắt
This review covers 40 years of migration studies of the Swiss Ornithological Institute with the tracking radar “Superfledermaus”. Since 1968, this pencil-beam radar was—according to its (military) capacities of surveillance and tracking—applied for two different tasks: (I) To record the intensity of migration at various heights (either based on densities recorded by conical scanning, or frequencies of passage recorded with fixed beams at various elevation angles); densities (birds km−3) and frequencies (birds km−1 h−1) are averages per height intervals of 200 m and do not refer to the position of single targets; they are suited to show average height distributions. (II) Tracking individual birds or flocks provides information on the exact position and flight behaviour of single targets over time. Part I: 16 (among 22) study sites with data from 1991 onwards are chosen to visualize and explain the vertical distribution of nocturnal bird migration according to regionally shaped environmental conditions in the Western Palaearctic and in the trade-wind zone. Average distributions at sites devoid of important orographic or persistent meteorological distortions usually show 20–30% of nocturnal migration in the lowest 200-m interval, 50% below 700 m above ground level (agl), and the 90% quantile reaching heights between 1400 and 2100 m agl. The remaining 10% of migrants are usually scattered up to about 4000 m above sea level (asl). The lower parts of migration are forced upwards when crossing mountain ridges and often remain high after such crossings; at subsequent observation points, migration is often high above ground. Particularly high altitudes prevail where wind conditions are improving with altitude, as e.g. during spring migration in the trade-wind zone. Part II deals with the seasonal and diurnal variation in the spatial distribution of particular bird targets. Birds were on average higher up at night compared to daytime and avoided flights close to the ground in hot desert areas. Highest flights were recorded during diurnal migration above desert areas. The highest 0.3% of the tracked birds were found between 3500 m and 4900 m asl at most sites, but at 5000–6870 m in spring migration of the Mediterranean and the trade-wind zone. The most extreme tracks were at altitudes between 4500 and 6600 m asl above the European mainland, and between 6000 and nearly 9000 m above the Balearic Islands and in the trade-wind zones. A concluding discussion deals with the reasons for generally low flight levels and the particular conditions and requirements of high-altitude migration. Flight conditions in the lower atmosphere deteriorate with altitude. Cost of climbing may impose additional restrictions (specifically for large non-passerines). Decreasing oxygen density imposes limits to high-altitude flight, and compensatory ventilation may induce increased water loss, if no physiological countermeasures are available. High flights are compulsory when crossing high mountain ranges and favoured when wind support increases with altitude. This is particularly true when long non-stop flights lay ahead, when turbulences and/or high temperatures at lower levels can be avoided, and possibly when time for homeward flights in spring can be minimized.
Tài liệu tham khảo
Able KP (1970) A radar study of the altitude of nocturnal passerine migration. Bird Band 41:282–290
Adamík P, Emmenegger T, Briedis M, Gustafsson L, Henshaw I, Krist M, Laaksonen T, Liechti F, Procházka P, Slaewski V, Hahn S (2016) Barrier crossing in small avian migrants: individual tracking reveals prolonged nocturnal flights into the day as a common migratory strategy. Sci Rep 6:21560. doi:10.1038/srep21560
Beason RC, Nohara TJ, Weber P (2013) Beware of the Boojum: caveats and strengths of avian radar. Hum Wildl Interact 7:16–46
Bellrose FC (1971) The distribution of nocturnal migrants in the air space. Auk 88:397–424
Berthold P (1996) Control of bird migration. Chapman & Hall, London
Biebach H, Biebach I, Friedrich W, Heine G, Partecke J, Schmidl D (2000) Strategies of passerine migration across the Mediterranean Sea and the Sahara desert: a radar study. Ibis 142:623–634
Blokpoel H, Burton J (1975) Weather and height of nocturnal migration in eastcentral Alberta: a radar study. Bird Band 46:311–328
Bruderer B (1969) Zur Registrierung und Interpretation von Echosignaturen an einem 3-cm-Zielverfol-gungs-radar. Ornithol Beob 66:70–88
Bruderer B (1971) Radarbeobachtungen über den Frühlingszug im Schweizerischen Mittelland. (Ein Beitrag zum Problem der Witterungsabhängigkeit des Vogelzugs). Ornithol Beob 68:89–158
Bruderer B (1994) Radar studies on nocturnal bird migration in the Negev. Ostrich 65:204–212
Bruderer B (2017) Vogelzug: eine schweizerische Perspektive. Ornithol Beob Beiheft 12:1–264
Bruderer B, Boldt A (2001) Flight characteristics of birds: I. radar measurements of speeds. Ibis 143:178–204
Bruderer B, Joss J (1969) Methoden und Probleme der Bestimmung von Radar-querschnitten frei flie-gen-der Vögel. Rev Suisse Zool 76:1106–1118
Bruderer B, Liechti F (1998a) Flight behaviour of nocturnally migrating birds in coastal areas—crossing or coasting. J Avian Biol 29:499–507
Bruderer B, Liechti F (1998b) Intensität, Höhe und Richtung von Tag- und Nachtzug im Herbst über Südwestdeutschland. Ornithol Beob 95:113–128
Bruderer B, Liechti F (2004) Welcher Anteil ziehender Vögel fliegt im Höhenbereich von Windturbinen? Ornithol Beob 101:327–335
Bruderer B, Peter D (2017) Windprofit als Ursache extremer Zughöhen. Ornithol Beob 114:73–86
Bruderer B, Steidinger P (1972) Methods of quantitative and qualitative analysis of bird migration with a tracking radar. In: Galler SR, Schmidt-Koenig K, Jacobs GJ, Belleville RE (eds) Animal orientation and navigation. NASA, Washington, DC, pp 151–167
Bruderer B, Steuri T, Baumgartner M (1995a) Short-range high-precision surveillance of nocturnal migration and tracking of single targets. Isr J Zool 41:207–220
Bruderer B, Underhill LG, Liechti F (1995b) Altitude choice of night migrants in a desert area predicted by meteorological factors. Ibis 137:44–55
Bruderer B, Peter D, Boldt A, Liechti F (2010) Wing-beat characteristics of birds recorded with tracking radar and cine camera. Ibis 152:272–291
Bruderer B, Steuri T, Aschwanden J, Liechti F (2012) Vom militätischen Zielfolgeradar zum Vogelradar. Ornithol Beob 109:157–176
Buurma L (2002) Vragen bij de zichtbare trek over Nederland. In: Lensink R, van Gasteren H, Hustings F, Buurma LS, van Duin G, Linnartz LG, Vogelzang F, Witkamp C (eds) Vogeltrek over Nederland. Schuyt & Co, Haarlem, pp 19–29
Carmi N, Pinshow B (1995) Water as a physiological limitation to flight duration in migrating birds: the importance of exhaled air temperature and oxygen extraction. Isr J Zool 41:369–374
Carmi N, Pinshow B, Porter WP, Jaeger J (1992) Water and energy limitations on flight duration in small migrating birds. Auk 109:268–276
Desholm M, Kahlert J (2005) Avian collision risk at an offshorewind farm. Biol Lett 1:296–298
Desholm M, Fox AD, Beasley PDL, Kahlert J (2006) Remote techniques for counting and estimating the number of bird-wind turbine collisions at sea: a review. Ibis 148(Suppl. 1):76–89
Dokter A, Liechti F, Stark H, Delobbe L, Tabary P, Holleman I (2011) Bird migration flight altitudes studied by a network of operational weather radars. J R Soc Interface 8:30–43
Dokter AM, Shamoun-Baranes J, Kemp MU, Tijm S, Holleman I (2013) High altitude bird migration at temperate latitudes: a synoptic perspective on wind assistance. PLoS One 8(1):e52300
Eastwood (1967) Radar ornithology. Methuen, London
Engel S, Klaassen RHG, Klaassen M, Biebach H (2006) Exhaled air temperature as a function of ambient temperature in flying and resting ducks. J Comp Physiol B 176:527–534
Fijn RC, Krijgsveld KL, Poot MJM, Dirksen S (2015) Bird movements at rotor heights measured continuously with vertical radar at a Dutch offshore wind farm. Ibis 157:558–566
Gauthreaux SA (1970) Weather radar quantification of bird migration. Bioscience 20:17–20
Green M (2004) Flying with the wind–spring migration of Arctic-breeding waders and geese over South Sweden. Ardea 92:145–160
Harmata AR, Podruzny KM, Zelenak JR, Morrison ML (1999) Using marine surveillance radar to study bird movements and impact assessment. Wildl Soc Bull 27:44–52
Hedenström A, Alerstam T (1992) Climbing performance of migrating birds as a basis for estimating limits for fuel-carrying capacity and muscle work. J Exp Biol 164:19–38
Hüppop O, Dierschke J, Wendeln H (2004) Zugvögel und Offshore-Windkraftanlagen: Konflikte und Lösungen. Berichte zum Vogelschutz 41:127–218
Hüppop O, Dierschke J, Exo KM, Fredrich E, Hill R (2006) Bird migration studies and potential collision risk with offshore wind turbines. Ibis 148(Suppl. 1):90–109
Jackson DC, Schmidt-Nielsen K (1964) Countercurrent heat exchange in the respiratory passages. PNAS 51:1192–1197
Jellmann J (1979) Flughöhen ziehender Vögel in Nordwestdeutschland nach Radarmessungen. Vogelwarte 30:118–134
Kemp MU, Shamoun-Baranes J, Dokter AM, van Loon E, Bouten W (2013) The influence of weather on the flight altitude of nocturnal migrants in mid-latitudes. Ibis 155:734–749
Klaassen M (1995) Water and energy limitations on flight range. Auk 112:260–262
Klaassen M (1996) Metabolic constraints on long-distance migration in birds. J Exp Biol 199:57–64
Klaassen M (2004) May dehydration risk govern long-distance migratory behaviour? J Avian Biol 35:4–6
Klaassen M, Biebach H (2000) Flight altitude of trans-Sahara migrants in autumn: a comparison of radar observations with predictions from meteorological conditions and water and energy balance models. J Avian Biol 31:47–55
Komenda-Zehnder S, Jenni L, Liechti F (2010) Do birds captures reflect migration intensity?—Trapping numbers on an Alpine pass compared with radar counts. J Avian Biol 41:434–444
La Sorte FA, Hochachka WM, Farnsworth A, Sheldon D, Van Doren BM, Fink D, Kelling S (2015) Seasonal changes in the altitudinal distribution of nocturnally migrating birds during autumn migration. R Soc open Sci. doi:10.1098/rsos.150347
Liechti F (2006) Birds: blowin’ by the wind? J Ornithol 147:202–211
Liechti F, Bruderer B (1995) Direction, speed and composition of nocturnal bird migration in the south of Israel. Isr J Zool 41:501–515
Liechti F, Schaller E (1999) The use of low-level jets by migrating birds. Naturwissenschaften 86:549–551
Liechti F, Schmaljohann H (2007a) Vogelzug über der westlichen Sahara. Ornithol Beob 104:33–44
Liechti F, Schmaljohann H (2007b) Wind-governed flight altitudes of nocturnal spring migrants over the Sahara. Ostrich 78:337–341
Liechti F, Klaassen M, Bruderer B (2000) Predicting migratory flight altitudes by physiological migration models. Auk 117:205–214
Nievergelt F, Liechti F, Bruderer B (1999) Migratory directions of free-flying birds versus orientation in registration cages. J Exp Biol 202:2225–2231
Pennycuick CJ (2008) Modelling the flying bird. Elsevier, Academic, Amsterdam
Renevey B (1981) Étude du mode de battements d’ailes d’oiseaux migrateurs nocturnes A l’aide d’un radar. Rev Suisse Zool 88:875
Richardson WJ (1976) Autumn migration over Puerto Rico and the western Atlantic: a radar study. Ibis 118:309–332
Richardson WJ (1990) Timing of bird migration in relation to weather: updated review. In: Gwinner E (ed) Bird migration: physiology and ecophysiology. Springer-Verlag, Berlin, Heidelberg, pp 78–101
Schmaljohann H, Liechti F (2009) Adjustments of wingbeat frequency and air speed to air density in free-flying migratory birds. J Exp Biol 212:3633–3642
Schmaljohann H, Liechti F, Bruderer B (2007a) Daytime passerine migrants over the Sahara—are these diurnal migrants or prolonged flights of nocturnal migrants? Ostrich 78:357–362
Schmaljohann H, Liechti F, Bruderer B (2007b) Songbird migration across the Sahara—the non-stop hypothesis rejected! Proc R Soc Lond B 274:735–739
Schmaljohann H, Liechti F, Bruderer B (2007c) An addendum to “Songbird migration across the Sahara: the non-stop hypothesis rejected!”. Proc R Soc Lond B 274:1919–1920
Schmaljohann H, Bruderer B, Liechti F (2008a) Sustained bird flights occur at temperatures far beyond expected limits. Anim Behav 76:1133–1138
Schmaljohann H, Liechti F, Bächler E, Steuri T, Bruderer B (2008b) Quantification of bird migration by radar—a detection probability problem. Ibis 150:342–355
Schmaljohann H, Liechti F, Bruderer B (2008c) First records of Lesser Black-backed Gulls (Larus fuscus) crossing the Sahara non-stop. J Avian Biol 39:233–237
Schmaljohann H, Liechti F, Bruderer B (2009) Trans-Sahara migrants select flight altitudes to minimize energy costs rather than water loss. Behav Ecol Sociobiol 63:1609–1619
Shamoun-Baranes J, Liechti F, Vansteelant WMG (2017) Atmospheric conditions create freeways, detours and tailbacks for migrating birds. J Comp Physiol A. doi:10.1007/s00359-017-1181-9
Spaar R (1997) Flight strategies of migrating raptors; a comparative study of interspecific variation in flight characteristics. Ibis 139:523–535
Van Gasteren H, Holleman I, Bouten W, Von Loon E, Shamoun-Baranes J (2008) Extracting bird migration information from C-band Doppler weather radars. Ibis 150:674–686
Williams TC, Williams JM, Ireland LC, Teal JM (1977) Autumnal bird migration over the western North Atlantic Ocean. Am Birds 31:251–267
Zaugg S, Saporta G, van Loon E, Schmaljohann H, Liechti F (2008) Automatic identification of bird targets with radar via patterns produced by wing flapping. J R Soc Interface 5:1041–1053