Vertical dispersion mechanism of long-range transported dust in Beijing: Effects of atmospheric turbulence

Atmospheric Research - Tập 269 - Trang 106033 - 2022
Lu Zhang1, Hongsheng Zhang1, Qianhui Li1, Xuhui Cai2, Yu Song2
1Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, PR China
2State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China

Tài liệu tham khảo

Acevedo, 2007, Turbulent carbon exchange in very stable conditions, Bound.-Layer Meteor., 125, 49, 10.1007/s10546-007-9193-6 Allen, 2013, Dust emission and transport mechanisms in the Central Sahara: Fennec ground-based observations from Bordj Badji Mokhtar, June 2011, J. Geophys. Res.-Atmos., 118, 6212, 10.1002/jgrd.50534 Anfossi, 2005, An analysis of sonic anemometer observations in low wind speed conditions, Bound.-Layer Meteor., 114, 179, 10.1007/s10546-004-1984-4 Aswini, 2020, Quantification of long-range transported aeolian dust towards the Indian peninsular region using satellite and ground-based data - A case study during a dust storm over the Arabian Sea, Atmos. Res., 239, 10.1016/j.atmosres.2020.104910 Baddock, 2014, A visibility and total suspended dust relationship, Atmos. Environ., 89, 329, 10.1016/j.atmosenv.2014.02.038 Belan, 2015, Particle dispersion in the neutral atmospheric surface layer, Bound.-Layer Meteor., 159, 23, 10.1007/s10546-015-0108-7 Broomandi, 2021, Destinations frequently impacted by dust storms originating from Southwest Iran, Atmos. Res., 248, 10.1016/j.atmosres.2020.105264 Chepil, 1957, Sedimentary characteristics of dust storms: II. Visibility and dust concentration, Am. J. Sci., 255, 104, 10.2475/ajs.255.2.104 Cornwell, 2021, Simulated dust transport in the convective boundary layer, J. Geophys. Res.-Atmos., 126, 10.1029/2020JD033429 Dupont, 2019, Dissimilarity between dust, heat, and momentum turbulent transports during aeolian soil erosion, J. Geophys. Res.-Atmos., 124, 1064, 10.1029/2018JD029048 Gholami, 2020, Spatial mapping of the provenance of storm dust: application of data mining and ensemble modelling, Atmos. Res., 233, 10.1016/j.atmosres.2019.104716 Gläser, 2015, The transatlantic dust transport from North Africa to the Americas-its characteristics and source regions, J. Geophys. Res.-Atmos., 120, 11231, 10.1002/2015JD023792 Helgason, 2012, Characteristics of the near-surface boundary layer within a mountain valley during winter, J. Appl. Meteorol. Climatol., 51, 583, 10.1175/JAMC-D-11-058.1 Huang, 2008, An amplitude-frequency study of turbulent scaling intermittency using empirical mode decomposition and hilbert spectral analysis, Europhys. Lett., 84, 40010, 10.1209/0295-5075/84/40010 Ishizuka, 2014, Power law relation between size-resolved vertical dust flux and friction velocity measured in a fallow wheat field, Aeolian Res., 12, 87, 10.1016/j.aeolia.2013.11.002 Jaafari, 2021, Associations between short term exposure to ambient particulate matter from dust storm and anthropogenic sources and inflammatory biomarkers in healthy young adults, Sci. Total Environ., 761, 10.1016/j.scitotenv.2020.144503 Ju, 2018, Comparison of two different dust emission mechanisms over the Horqin Sandy Land area: aerosols contribution and size distributions, Atmos. Environ., 176, 82, 10.1016/j.atmosenv.2017.12.017 Ju, 2018, Effects of soil moisture on dust emission from 2011 to 2015 observed over the Horqin Sandy Land area, China, Aeolian Res., 32, 14, 10.1016/j.aeolia.2018.01.003 Kaimal, 1972, Spectral characteristics of surface-layer turbulence, Q. J. R. Meteorol. Soc., 98, 563, 10.1002/qj.49709841707 Lawrence, 2009, The contemporary physical and chemical flux of aeolian dust: a synthesis of direct measurements of dust deposition, Chem. Geol., 267, 46, 10.1016/j.chemgeo.2009.02.005 Li, 2011, Coherent Structures and the Dissimilarity of turbulent transport of momentum and scalars in the unstable atmospheric surface layer, Bound.-Layer Meteor., 140, 243, 10.1007/s10546-011-9613-5 Li, 2010, Characteristics and application of self-developed fast-response visibility meter, Meteorol. Environ. Res., 1, 105 Li, 2020, Characteristics of the atmospheric boundary layer and its relation with PM2.5 during haze episodes in winter in the North China Plain, Atmos. Environ., 223, 10.1016/j.atmosenv.2020.117265 Liang, 2021, Revealing the dust transport processes of the 2021 mega dust storm event in northern China, Sci. Bull. Liu, 2020, Dust storm susceptibility on different land surface types in arid and semiarid regions of northern China, Atmos. Res., 243, 10.1016/j.atmosres.2020.105031 Mahrt, 2009, Characteristics of submeso winds in the stable boundary layer, Bound.-Layer Meteor., 130, 1, 10.1007/s10546-008-9336-4 Mahrt, 2014, Stably stratified atmospheric boundary layers, Annu. Rev. Fluid Mech., 46, 23, 10.1146/annurev-fluid-010313-141354 Miao, 2017, Relay transport of aerosols to Beijing-Tianjin-Hebei region by multi-scale atmospheric circulations, Atmos. Environ., 165, 35, 10.1016/j.atmosenv.2017.06.032 Moriwaki, 2006, Local and global similarity in turbulent transfer of heat, water vapour, and CO2 in the dynamic convective sublayer over a suburban area, Bound.-Layer Meteor., 120, 163, 10.1007/s10546-005-9034-4 Nickling, 1993, Dust emission and transport in Mali, West Africa, Sedimentology., 40, 859, 10.1111/j.1365-3091.1993.tb01365.x Noone, 2013, Determining water sources in the boundary layer from tall tower profiles of water vapor and surface water isotope ratios after a snowstorm in Colorado, Atmos. Chem. Phys., 13, 1607, 10.5194/acp-13-1607-2013 Oduber, 2019, Unusual winter Saharan dust intrusions at Northwest Spain: air quality, radiative and health impacts, Sci. Total Environ., 669, 213, 10.1016/j.scitotenv.2019.02.305 Patterson, 1977, Measurements of visibility vs mass-concentration for airborne soil particles, Atmos. Environ., 11, 193, 10.1016/0004-6981(77)90226-8 Ren, 2019, Effects of turbulence structure and urbanization on the heavy haze pollution process, Atmos. Chem. Phys., 19, 1041, 10.5194/acp-19-1041-2019 Ren, 2019, Comparison of the turbulence structure during light and heavy haze pollution episodes, Atmos. Res., 230, 10.1016/j.atmosres.2019.104645 Ren, 2020, Determining the fluctuation of PM2.5 mass concentration and its applicability to Monin-Obukhov similarity, Sci. Total Environ., 710, 10.1016/j.scitotenv.2019.136398 Ren, 2021, Temporal and spatial characteristics of turbulent transfer and diffusion coefficient of PM2.5, Sci. Total Environ., 782, 146804, 10.1016/j.scitotenv.2021.146804 Ren, 2021, Turbulence barrier effect during heavy haze pollution events, Sci. Total Environ., 753, 10.1016/j.scitotenv.2020.142286 Richter, 2018, Inertial effects on the vertical transport of suspended particles in a turbulent boundary layer, Bound.-Layer Meteor., 167, 235, 10.1007/s10546-017-0325-3 Salmond, 2005, Wavelet analysis of intermittent turbulence in a very stable nocturnal boundary layer: implications for the vertical mixing of ozone, Bound.-Layer Meteor., 114, 463, 10.1007/s10546-004-2422-3 Schmitt, 2009, Analysis of velocity fluctuations and their intermittency properties in the surf zone using empirical mode decomposition, J. Mar. Syst., 77, 473, 10.1016/j.jmarsys.2008.11.012 Schmutz, 2019, Flux similarity and turbulent transport of momentum, heat and carbon dioxide in the urban boundary layer, Bound.-Layer Meteor., 172, 45, 10.1007/s10546-019-00431-w Shaw, 1983, Structure of the Reynolds stress in a canopy layer, J. Appl. Meteorol. Climatol., 22, 1922, 10.1175/1520-0450(1983)022<1922:SOTRSI>2.0.CO;2 Uzan, 2018, New insights into the vertical structure of the September 2015 dust storm employing eight ceilometers and auxiliary measurements over Israel, Atmos. Chem. Phys., 18, 3203, 10.5194/acp-18-3203-2018 Vickers, 1997, Quality control and flux sampling problems for tower and aircraft data, J. Atmos. Ocean. Technol., 14, 512, 10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2 Vickers, 2003, The cospectral gap and turbulent flux calculations, J. Atmos. Ocean. Technol., 20, 660, 10.1175/1520-0426(2003)20<660:TCGATF>2.0.CO;2 Wang, 1993, Dispersion of heavy-particles by turbulent motion, J. Atmos. Sci., 50, 1897, 10.1175/1520-0469(1993)050<1897:DOHPBT>2.0.CO;2 Wei, 2016, The analyses of turbulence characteristics in the atmospheric surface layer using arbitrary-order Hilbert spectra, Bound.-Layer Meteor., 159, 391, 10.1007/s10546-015-0122-9 Wei, 2017, Investigation of turbulence behaviour in the stable boundary layer using Arbitrary-order Hilbert Spectra, Bound.-Layer Meteor., 163, 311, 10.1007/s10546-016-0227-9 Wei, 2018, Intermittent turbulence contributes to vertical dispersion of PM2.5 in the North China Plain: cases from Tianjin, Atmos. Chem. Phys., 18, 12953, 10.5194/acp-18-12953-2018 Wei, 2019, Diurnal characteristics of turbulent intermittency in the Taklimakan Desert, Meteorol. Atmos. Phys., 131, 287, 10.1007/s00703-017-0572-3 Wei, 2021, Characteristics of the turbulence intermittency and its influence on the turbulent transport in the semi-arid region of the Loess Plateau, Atmos. Res., 249, 10.1016/j.atmosres.2020.105312 Wilczak, 2001, Sonic anemometer tilt correction algorithms, Bound.-Layer Meteor., 99, 127, 10.1023/A:1018966204465 Yassin, 2018, Dust storms backward Trajectories' and source identification over Kuwait, Atmos. Res., 212, 158, 10.1016/j.atmosres.2018.05.020 Yin, 2021, Why super sandstorm 2021 in North China, Natl. Sci. Rev., 10.1093/nsr/nwab165 Zhang, 2008, Experiment on dust flux during duststorm periods over desert area, Acta Meteorol. Sin., 22, 239 Zhang, 2019, Parameterization schemes on dust deposition in Northwest China: model validation and implications for the global dust cycle, Atmos. Environ., 209, 1, 10.1016/j.atmosenv.2019.04.017