Verifying Huppert’s Conjecture for PSp4(q) when q > 7

Algebras and Representation Theory - Tập 15 - Trang 427-448 - 2010
Thomas P. Wakefield1
1Department of Mathematics and Statistics, Youngstown State University, Youngstown, USA

Tóm tắt

Let G denote a finite group and cd (G) the set of irreducible character degrees of G. Bertram Huppert conjectured that if H is a finite nonabelian simple group such that cd (G) = cd (H), then G ≅ H × A, where A is an abelian group. Huppert verified the conjecture for PSp4(q) when q = 3, 4, 5, or 7. In this paper, we extend Huppert’s results and verify the conjecture for PSp4(q) for all q. This demonstrates progress toward the goal of verifying the conjecture for all nonabelian simple groups of Lie type of rank two.

Tài liệu tham khảo

Bianchi, M., Chillag, D., Lewis, M.L., Pacifici, E.: Character degree graphs that are complete graphs. Proc. AMS 135, 671–676 (2007) Cao, Z., Dong, X.: On Terai’s conjecture. Proc. Jpn. Acad., Ser. A Math. Sci. 74, 127–129 (1998) Carter, R.W.: Finite Groups of Lie Type: Conjugacy Classes and Complex Characters. Wiley, New York (1985) Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of Finite Groups. Oxford University Press, London (1984) Enomoto, H.: The characters of the finite symplectic group \(\text{Sp}(4,\,q)\), q = 2f. Osaka J. Math. 9, 75–94 (1972) Feit, W., Seitz, G.M.: On finite rational groups. Ill. J. Math. 33, 103–131 (1989) Huppert, B.: Some simple groups which are determined by the set of their character degrees I. Ill. J. Math. 44, 828–842 (2000) Huppert, B., Lempken, W.: Simple groups, whose order is divisible by only four primes. Proc. of F. Scorina Gomel State Univ. 16, 64–75 (2000) Isaacs, I.M.: Character Theory of Finite Groups. Dover, New York (1994) Lewis, M.L., White, D.L.: Nonsolvable groups satisfying the one-prime hypothesis. Algebr. Represent. Theory 10, 379–412 (2007) Malle, G., Zalesskiǐ, A.E.: Prime power degree representations of quasi-simple groups. Arch. Math. 77, 461–468 (2001) Schmid, P.: Rational matrix groups of a special type. Linear Algebra Appl. 71, 289–293 (1985) Schmid, P.: Extending the Steinberg representation. J. Algebra 150, 254–256 (1992) Shahabi, M.A., Mohtadifar, H.: The characters of the finite projective symplectic group PSp(4, q). Lond. Math. Soc. Lect. Note Ser. 305, 496–527 (2001) Simpson, W., Sutherland Frame, J.: The character tables for SL(3, q), SU(3, q 2), PSL(3, q) and PSU(3, q 2). Can. J. Math. 25, 486–494 (1973) Srinivasan, B.: The characters of the finite symplectic group Sp(4, q). Trans. Am. Math. Soc. 131, 488–525 (1968) Wakefield, T.P.: Verifying Huppert’s Conjecture for \({}^2G_2(q^2)\). Algebr. Represent. Theory (2009). doi:10.1007/s10468-009-9206-x Wakefield, T.P.: Verifying Huppert’s Conjecture for PSL3(q) and \({\rm{PSU}}_3(q^2)\). Commun. Algebra 37, 2887–2906 (2009) Wakefield, T.P.: Verifying Huppert’s Conjecture for the simple groups of Lie type of rank two. Ph.D. thesis, Kent State University (2008) White, D.L.: Degree graphs of simple linear and unitary groups. Commun. Algebra 34(8), 2907–2921 (2006) White, D.L.: Degree graphs of simple orthogonal and symplectic groups. J. Algebra 319, 833–845 (2008)