Verified Error Bounds for Linear Systems Through the Lanczos Process

Springer Science and Business Media LLC - Tập 5 - Trang 255-267 - 1999
Andreas Frommer1, Andre Weinberg1
1Fachbereich Mathematik, Bergische Universität Wuppertal, Wuppertal, Germany

Tóm tắt

We use verified computations and the Lanczos process to obtain guaranteed lower and upper bounds on the 2-norm and the energy-norm error of an approximate solution to a symmetric positive definite linear system. The upper bounds require the a priori knowledge of a lower bound on the smallest eigenvalue.

Tài liệu tham khảo

Alefeld, G. and Herzberger, J.: Introduction to Interval Computations, Academic Press, 1983. Alefeld, G. and Mayer, G.: The Cholesky Method for Interval Data, Linear Algebra Appl. 194 (1993), pp. 161–182. Barth, W. and Nuding, E.: Optimale Lösung von Intervallgleichungssystemen, Computing 12 (1974), pp. 117–125. Frommer, A.: Lösung linearer Gleichungssysteme auf Parallelrechnern. Vieweg-Verlag, 1990. Frommer, A. and Maass, P.: Fast CG-Based Methods for Thikonov-Phillips Regularization, SIAM J. Sc. Comp., to appear, also available at http://www.math.uniwuppertal.de/SciComp/Preprints.html as preprint BUGHW-SC 96/10. Golub, G. and Meurant, G.: Matrices, Moments and Quadrature, in: Numerical Analysis 1993 (Dundee 1993) (Pitman Res. Notes Math. Ser. 302), Longman Sci. Tech., Harlow, 1994. Golub, G. and Meurant, G.: Matrices, Moments and Quadrature II. How to Compute the Error in Iterative Methods, BIT 37 (1997), pp. 687–705. Hansen, P.: Regularization Tool, a MATLAB Package for the Analysis and Solution of Discrete Ill-Posed Problems; Version 2.0 for MATLAB 4.0, Tech.Rep. UNIC, 92-03, 1993. Klatte, R., Kulisch, U., Neaga, M., Ratz, D., and Ullrich, Ch.: PASCAL-XSC Sprachbeschreibung mit Beispielen, Springer-Verlag, 1991. Kulisch, U. and Miranker, W.: The Arithmetic of the Digital Computer, SIAM Rev. 28 (1986). Matrix Market, http://math.nist.gov/MatrixMarket/. Neumaier, A.: Interval Methods for Linear Systems of Equations, Cambridge University Press, 1990. Rump, S.: Vertification Methods for Dense and Sparse Systems of Equations, in: Herzberger, J. (ed.), Topics in Validated Computations, North-Holland, 1993. Saad, Y.: Iterative Methods for Sparse Linear Systems, PWS, Boston, 1996.