Verification of the EUCLID/V2 Integrated Code Thermal-Hydraulic Module Based on Experiments That Take into Account the Parameter Distribution over the Fuel Assembly’s Cross Section

А. А. Бутов1, I. A. Kliminov1, I. G. Kudashov1, V. I. Chukhno1, Т. V. Sycheva1, E. V. Usov1, N. A. Mosunova2, V. F. Strizhov2
1Nuclear Safety Institute, Novosibirsk Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
2Nuclear Safety Institute, Russian Academy of Sciences, 115191, Moscow, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

E. V. Usov, A. A. Butov, V. I. Chukhno, I. A. Klimonov, I. G. Kudashov, V. S. Zhdanov, N. A. Pribaturin, N. A. Mosunova, and V. F. Strizhov, “3D EVKLID/V2 code aided simulation of severe accidents,” At. Energy 127, 1–7 (2019).

E. V. Usov, M. E. Kuznetsova, N. A. Pribaturin, R. V. Chalyi, N. I. Ryzhov, and A. E. Kiselev, “Two-dimensional thermohydraulic module of the integrated code SOKRAT-BN: Mathematical model and computational results,” At. Energy 120, 119–126 (2016). https://doi.org/10.1007/s10512-016-0105-z

H. Yamano, S. Fujita, Y. Tobita, K. Kamiyama, S. Kondo, K. Morita, E. A. Fischer, D. J. Brear, N. Shirakawa, X. Cao, M. Sugaya, M. Mizuno, S. Hosono, T. Kondo, W. Masche, et al., SIMMER-III: A Computer Program for LMFR Core Disruptive Accident Analysis. Version 3.A Model Summary and Program Description, Report No. JNC-TN–9400-2003-071 (Oarai Engineering Center – Japan Nuclear Cycle Development Inst., Orai, Ibaraki, 2003).

Yu. M. Ashurko, A. V. Volkov, and K. F. Raskach, “Development of program modules with space-time kinetics for calculating unanticipated accidents in fast reactors,” At. Energy 114, 77–82 (2013).

A. Chenu, K. Mikityuk, and R. Chawla, “TRACE simulation of sodium boiling in pin bundle experiments under loss-of-flow conditions,” Nucl. Eng. Des. 239, 2417–2429 (2009). https://doi.org/10.1016/j.nucengdes.2009.07.015

F. Huber and W. Peppler, Summary and Implications of Out-of-Pile Investigations of Local Cooling Distributions in LMFBR Subassembly Geometry under Single-Phase and Boiling Conditions, Report No. KFK–3927 (Kernforschungszentrum, Karlsruhe, 1985).

G. Kayser, J. Charpenel, and C. Jamond, “Summary of the SCARABEE-N subassembly melting and propagation tests with an application to hypothetical total instantaneous blockage in a reactor,” Nucl. Sci. Eng. 128, 144–185 (1998). https://doi.org/10.13182/NSE98-A1950

F. Huber, A. Kaiser, K. Mattes, and W. Peppler, “Steady state and transient sodium boiling experiments in a 37-pin bundle,” Nucl. Eng. Des. 100, 377–386 (1987). https://doi.org/10.1016/0029-5493(87)90087-2

H. Yamano and Y. Tobita, “Experimental analyses by SIMMER-III on duct-wall failure and fuel discharge/relocation behavior,” Mech. Eng. J. 1, TEP0028 (2014). https://doi.org/10.1299/mej.2014tep0028

A. A. Butov, V. S. Zhdanov, I. A. Klimonov, I. G. Kudashov, A. E. Kutlimetov, N. A. Mosunova, V. F. Strizhov, A. A. Sorokin, S. A. Frolov, E. V. Usov, and V. I. Chukhno, “The EUCLID/V2 code physical models for calculating fuel rod and core failures in a liquid metal cooled reactor,” Therm. Eng. 66, 293–301 (2019). https://doi.org/10.1134/S0040601519050021

E. V. Usov, A. A. Butov, V. I. Chukhno, I. A. Klimonov, I. G. Kudashov, V. S. Zhdanov, N. A. Pribaturin, N. A. Mosunova, and V. F. Strizhov, “Fuel pin melting in a fast reactor and melt solidification: Simulation using the SAFR/V1 module of the EVKLID/V2 integral code,” At. Energy 124, 147–153 (2018).

E. V. Usov, A. A. Butov, V. I. Chukhno, I. A. Klimonov, I. G. Kudashov, V. S. Zhdanov, N. A. Pribaturin, N. A. Mosunova, and V. F. Strizhov, “SAFR/V1 (EVKLID/V2 integral code module) aided simulation of melt movement along the surface of a fuel element in a fast reactor during a serious accident,” At. Energy 124, 232–237 (2018).

RTM 24.031.05-72. Methods and Dependencies for Theoretical Calculation of Heat Transfer and Hydraulic Resistance of NPP Heat Exchanging Equipment (Minist. Tyazh. Energomashinostr., Moscow, 1972).

A. V. Zhukov, A. P. Sorokin, P. A. Titov, and P. A. Ushakov, “Analysis of the fast reactors' fuel-rod bundle flow resistance,” At. Energy 60, 369–374 (1986).