Ventilation effects in a karstic show cave and in its vadose environment, Nerja, Southern Spain
Tóm tắt
This study deals with the process of CO2 exchange between karst systems and the atmosphere, which is an important issue in the global carbon cycle and in climate change estimations. The study is focused on CO2 measurements in the Nerja Cave (south Spain) and in a number of research boreholes located nearby during the 2006–2008 period. Nerja is an important show cave, with some 500,000 visitors per year. Tourists are only allowed to visit the part of the cavity nearest to the entrance. In 2006, monitoring of environmental variables began in the area closed to visits. Some anthropogenically induced peaks in the CO2 content inside the cavity were used as a tracer to asses the ventilation patterns, which are mainly convection-driven, as in many other Mediterranean show caves. Air circulation is especially active during winter when the inflow of external precedence is important. The record from boreholes allowed identification of CO2 concentrations of some tens of thousands of ppm in the vadose zone (<60 m). The highest CO2 contents are shallower in summer and deeper in winter. This can be explained both by gas dissolution by downward percolation water in winter and by the increase of upward gas diffusion in summer. The overall influence of the external atmosphere, by way of the cave ventilation is presumed to mask incoming flows from the CO2-rich vadose environment.
Tài liệu tham khảo
Amundson RG, Davidson EA (1990) Carbon dioxide and nitrogenous gases in the soil atmosphere. J Geochem Explor 38:13–41
Atkinson TC (1977) Carbon dioxide in atmosphere of unsaturated zone—important control of groundwater hardness in limestones. J Hydrol 35(1–2):111–123
Baker A, Genty D (1998) Environmental pressures on conserving cave speleothems: effects of changing surface land use and increased cave tourism. J Environ Manag 53:165–175
Baldini JUL, Baldini LM, McDermott F, Clipson N (2006) Carbon dioxide sources, sinks, and caves: evidence from Ballynamintra Cave, Ireland. J Cave Karst Stud 68(1):4–11
Baldini JUL, McDremott F, Hoffmann DL, Richards DA, Clipson N (2008) Very high frequency and seasonal cave atmosphere PCO2 variability: implications for stalagmite growth and oxygen isotope-based paleoclimate records. Earth Planet Sci Lett 272:118–129. doi:https://doi.org/10.1016/j.epsl.2008.04.031
Batiot-Guilhe C, Seidel J-L, Jourde H, Hébrard O, Bailly-Comte V (2007) Seasonal variations of CO2 and 222Rn in a Mediterranean sinkhole-spring (Causse d’Aumelas, SE France). Int J Speleol 36:51–56
Benavente J, Vadillo I, Carrasco F, Soler A, Liñán C, Moral F (2010) Air carbon dioxide contents in the vadose zone of a Mediterranean karst. Vadose Zone J 9:126–136. doi:https://doi.org/10.2136/vzj2009.0027
Bourges F, Mangin A, D’Hulst D (2001) Le gaz carbonique dans la dynamique de l’atmosphère des cavités karstiques: l’exemple de l’Aven d’Orgnac (Ardèche). C R Acad Sci Ser IIa Sci Terre Planets 333:685–692
Cañete S (1997) Concentraciones en Radón e intercambio de aire en la Cueva de Nerja. Tesis de Licenciatura, Universidad de Málaga, 84 pp, unpublished
Carrasco F, Andreo B, Vadillo I, Durán JJ, Liñán C (1999) El medio ambiente subterráneo de la Cueva de Nerja (Málaga). Modificaciones antrópicas. En: Andreo B, Carrasco F, Durán JJ (eds) Contribución del estudio científico de las cavidades kársticas al conocimiento geológico. Nerja (Málaga). Patronato de la Cueva de Nerja, Málaga, pp 323–334
Cerling TE, Solomon DK, Quade J, Bowman JR (1991) On the isotopic composition of carbon in soil carbon dioxide. Geochim Cosmochim Acta 55:3403–3405
Cuevas-González J, Fernández-Cortés A, Andreu JM, Cañaveras JC (2009) Control de parámetros ambientales en las Galerías Altas y Nuevas de la Cueva de Nerja (Málaga). Resultados preliminares. In: Durán JJ, López-Martínez J (eds) Cuevas turísticas, cuevas vivas. Madrid. Asoc. Española de Cuevas Turísticas, pp 119–129
Ek C, Gewelt M (1985) Carbon dioxide in cave atmospheres. New results in Belgium and comparison with some other countries. Earth Surf Proc Land 10:173–187
Faimon J, Štelcl J, Sas D (2006) Anthropogenic CO2-flux into cave atmosphere and its environmental impact: a case study in the Císařská Cave (Moravian Karst, Czech Republic). Sci Total Environ 369:231–245
Fernandez-Cortes A, Calaforra JM, Sanchez-Martos F (2006) Spatiotemporal analysis of air conditions as a tool for the environmental management of a show cave (Cueva del Agua, Spain). Atmos Environ 40:7378–7394
Hamada Y, Tanaka T (2001) Dynamics of carbon dioxide in soil profiles based on long-term field observation. Hydrol Process 15:1829–1845
Houghton RA (2002) Terrestrial carbon sink. Biologist 49:155–160
Hoyos M, Soler V, Cañaveras JC, Sanchez-Moral S, Sanz-Rubio E (1998) Microclimatic characterization of a karstic cave: human impact on microenvironmental parameters of a prehistoric rock art cave Candamo Cave, northern Spain. Environ Geol 33(4):231–242
Keller CK, Bacon DH (1998) Soil respiration and georespiration distinguished by transport of vadose CO2, 13CO2 and 14CO2. Global Biogeochem Cycles 12:361–372
Kowalczk AJ, Froelich PN (2010) Cave air ventilation and CO2 outgassing by radon-222 modeling: how fast do cave breathe? Earth Planet Sci Lett 289:209–219. doi:https://doi.org/10.1016/j.epsl.2009.11.010
Liñán C, Simón M, del Rosal Y, Garrido A (2007) Estudio preliminar del clima en el entorno de la Cueva de Nerja (Andalucía, provincia de Málaga). Geol. Survey of Spain (IGME) Hidrogeol. Aguas Subterr Ser 24:159–168
Liñán C, Carrasco F, Calaforra JM, del Rosal Y, Garrido A, Vadillo I (2009) Control de parámetros ambientales en las Galerías Altas y Nuevas de la Cueva de Nerja (Málaga). Resultados preliminares. In: Durán JJ, López-Martínez J (eds) Cuevas turísticas, cuevas vivas. Madrid. Asoc. Española de Cuevas Turísticas, pp 132–144
Mattey D, Lowry D, Duffet J, Fisher R, Hodge E, Frisia S (2008) A 53 year seasonally resolved oxygen and carbon isotope record from a modern Gibraltar speleothem: reconstructed drip water and relationship to local precipitation. Earth Planet Sci Lett 269:80–95
Miotke FD (1974) Carbon dioxide and the soil atmosphere, Abhandlungen zur Karst-Und Höhlenkunde, Reihe A, Speläologie. Heft 9
Pérez I, Andreo B (2007) Sierra Almijara y Alberquillas. In: Durán JJ (ed.) Atlas Hidrogeológico de la provincia de Málaga, Instituto Geológico y Minero de España- Diputación de Málaga, Madrid, 2, 144–148
Pérez Sanchez-Cañete E (2009) Comportamiento de los flujos gaseosos de CO2 en el suelo de un ecosistema kárstico. Factores que afectan a su ventilación. Tesis de Master. Universidad de Granada
Rastogi M, Singh S, Pathak H (2002) Emission of carbon dioxide from soil. Curr Sci 82:5–10
Renault P (1968) Sur la distinction de plusieurs régions karstiques en raison de la teneur en anhydride carbonique des atmosphères de grottes. C R Acad Sci Paris 267:2288–2290
Spotl C, Fairchild IJ, Tooth AF (2005) Cave air control on dripwater geochemistry, Obir Caves (Austria): implications for speleothem deposition in dynamically ventilated caves. Geochim Cosmochim Acta 69:2451–2468
Walvoord MA, Striegl RG, Prudic DE, Stonestrom DA (2005) CO2 dynamics in the Amargosa desert: fluxes and isotopic speciation in a deep unsaturated zone. Water Resour Res 41:W02006. doi:https://doi.org/10.1029/2004WR003599
Wood WW, Petraitis MJ (1984) Origin and distribution of carbon dioxide in the unsaturated zone of the southern High Plains. Water Resour Res 20:1193–1208
Yuan D (1997) The carbon cycle in karst. Zeitschrift für Geomorphologie, Supplementbände Band 108:91–102