Venezuelan equine encephalitis emergence: Enhanced vector infection from a single amino acid substitution in the envelope glycoprotein

Aaron C. Brault1, Ann M. Powers1,2, Diana I. Ortiz1, Scott C. Weaver1, Roberto Navarro‐López1
1Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609; and Comision Mexico Estados Unidos para la Prevencion de la Fiebre Aftosa y Otros Enfermedades Exoticas de los Animales, Tuxtla-Gutierez, Chiapas, Mexico
2Centers for Disease Control and Prevention

Tóm tắt

In 1993 and 1996, subtype IE Venezuelan equine encephalitis (VEE) virus caused epizootics in the Mexican states of Chiapas and Oaxaca. Previously, only subtype IAB and IC VEE virus strains had been associated with major outbreaks of equine and human disease. The IAB and IC epizootics are believed to emerge via adaptation of enzootic (sylvatic, equine-avirulent) strains for high titer equine viremia that results in efficient infection of mosquito vectors. However, experimental equine infections with subtype IE equine isolates from the Mexican outbreaks demonstrated neuro-virulence but little viremia, inconsistent with typical VEE emergence mechanisms. Therefore, we hypothesized that changes in the mosquito vector host range might have contributed to the Mexican emergence. To test this hypothesis, we evaluated the susceptibility of the most abundant mosquito in the deforested Pacific coastal locations of the VEE outbreaks and a proven epizootic vector, Ochlerotatus taeniorhynchus . The Mexican epizootic equine isolates exhibited significantly greater infectivity compared with closely related enzootic strains, supporting the hypothesis that adaptation to an efficient epizootic vector contributed to disease emergence. Reverse genetic studies implicated a Ser → Asn substitution in the E2 envelope glycoprotein as the major determinant of the increased vector infectivity phenotype. Our findings underscore the capacity of RNA viruses to alter their vector host range through minor genetic changes, resulting in the potential for disease emergence.

Từ khóa


Tài liệu tham khảo

10.1146/annurev.ento.49.061802.123422

Weaver S. C. Anishchenko M. Bowen R. Brault A. C. Estrada-Franco J. G. Fernandez Z. Greene I. Ortiz D. Paessler S. & Powers A. M. (2004) Arch. Virol. Suppl. 43–64.15119762

10.1016/S0092-8674(01)00302-6

10.1016/S0140-6736(96)02275-1

10.1073/pnas.92.12.5278

Walton, T. E. & Grayson, M. A. (1988) in The Arboviruses: Epidemiology and Ecology, ed. Monath, T. P. (CRC, Boca Raton, FL), Vol. 4, pp. 203–231.

Johnson, K. M. & Martin, D. H. (1974) Adv. Vet. Sci. Comp. Med. 18, 79–116.4609399

10.1093/infdis/128.3.271

10.4269/ajtmh.2001.65.64

10.1093/oxfordjournals.aje.a121247

10.1093/oxfordjournals.aje.a112066

10.1128/jvi.71.9.6697-6705.1997

10.1128/JVI.76.4.1718-1730.2002

10.4269/ajtmh.1998.59.100

10.4269/ajtmh.1999.60.630

10.1128/JVI.73.5.4266-4271.1999

Gonzalez-Salazar, D., Estrada-Franco, J. G., Carrara, A. S., Aronson, J. F. & Weaver, S. C. (2003) Emerging Infect. Dis. 9, 161–168.12603985

10.4269/ajtmh.2003.68.485

10.4269/ajtmh.1976.25.151

10.4269/ajtmh.1979.28.1060

10.4269/ajtmh.1976.25.336

10.1093/jmedent/29.1.62

10.1128/JVI.76.12.6387-6392.2002

10.1093/jmedent/36.4.407

10.1128/JVI.74.9.4258-4263.2000

American Mosquito Control Association (1994) Manual for Mosquito Rearing and Experimental Techniques Bulletin No. 5 (Am. Mosquito Control Assoc. Lake Charles LA).

Weaver S. C. (1997) in Viral Pathogenesis ed. Nathanson N. (Lippincott-Raven New York) pp. 329–352.

10.1016/S0965-1748(97)00014-3

10.4269/ajtmh.1982.31.561

10.1093/jmedent/23.1.23

10.4269/ajtmh.1984.33.953

10.1603/0022-2585-40.3.306

10.1093/jmedent/30.2.391

10.1093/oxfordjournals.aje.a112068

10.4269/ajtmh.1969.18.290

10.1099/0022-1317-72-10-2431

10.1128/JVI.77.16.8872-8881.2003

10.1099/0022-1317-74-3-519