Velocity of pulses in discrete excitable systems

Nonlinear Analysis: Real World Applications - Tập 13 - Trang 2794-2803 - 2012
J.I. Arana1, L.L. Bonilla1
1G. Millán Institute of Fluid Dynamics, Nanoscience and Industrial Mathematics, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, Spain

Tài liệu tham khảo

Frenkel, 1939, On the theory of plastic deformation and twinning, J. Phys. (Moscow), 1, 137 Carpio, 2003, Edge dislocations in crystal structures considered as traveling waves of discrete models, Phys. Rev. Lett., 90, 135502, 10.1103/PhysRevLett.90.135502 Cahn, 1960, Theory of crystal growth and interface motion in crystalline materials, Acta Metall., 8, 554, 10.1016/0001-6160(60)90110-3 Bonilla, 2002, Theory of nonlinear charge transport, wave propagation and self-oscillations in semiconductor superlattices, J. Phys.: Condens. Matter, 14, R341 Carpio, 2001, Motion of wave fronts in semiconductor superlattices, Phys. Rev. E, 64, 036204, 10.1103/PhysRevE.64.036204 Bonilla, 2010 Arana, 2011, Wave fronts, pulses and wave trains in photoexcited superlattices behaving as excitable or oscillatory media, J. Phys. A, 44, 395003, 10.1088/1751-8113/44/39/395003 Grüner, 1988, The dynamics of charge-density waves, Rev. Mod., 60, 1129, 10.1103/RevModPhys.60.1129 Scott, 1975, The electrophysics of a nerve fiber, Rev. Mod., 47, 487, 10.1103/RevModPhys.47.487 Anderson, 1995, Wave front propagation and its failure in coupled systems of discrete bistable cells modelled by FitzHugh–Nagumo dynamics, Internat. J. Bifur. Chaos, 5, 63, 10.1142/S0218127495000053 Keener, 1998 Zinner, 1992, Existence of traveling wavefront solutions for the discrete Nagumo equation, J. Differential Equations, 96, 1, 10.1016/0022-0396(92)90142-A Hankerson, 1993, Wave fronts for a cooperative tridiagonal system of differential equations, J. Dynam. Differential Equations, 5, 359, 10.1007/BF01053165 Filip, 1999, Existence and modulation of traveling waves in particle chains, Comm. Pure Appl. Math., 52, 693, 10.1002/(SICI)1097-0312(199906)52:6<693::AID-CPA2>3.0.CO;2-9 Fife, 1979, vol. 28 Carpio, 2003, Pulse propagation in discrete systems of coupled excitable cells, SIAM J. Appl. Math., 63, 619, 10.1137/S0036139901391732 Keener, 1987, Propagation and its failure in coupled systems of discrete excitable cells, SIAM J. Appl. Math., 47, 556, 10.1137/0147038 Carpio, 2003, Depinning transitions in discrete reaction–diffusion equations, SIAM J. Appl. Math., 63, 1056, 10.1137/S003613990239006X Hupkes, 2011, Propagation failure in the discrete Nagumo equation, Proc. Amer. Math. Soc., 139, 3537, 10.1090/S0002-9939-2011-10757-3 Keener, 1988, Singular perturbation theory of traveling waves in excitable media (a review), Physica D, 32, 327, 10.1016/0167-2789(88)90062-0 Carpio, 2005, Wave trains, self-oscillations and synchronization in discrete media, Physica D, 207, 117, 10.1016/j.physd.2005.06.004 Hupkes, 2010, Travelling pulses for the discrete FitzHugh–Nagumo system, SIAM J. Appl. Dyn. Syst., 9, 827, 10.1137/090771740 H.J. Hupkes, D. Pelinovsky, B. Sandstede, Stability of pulse solutions for the discrete FitzHugh–Nagumo system, Trans. Amer. Math. Soc. (2012) (in press). Carpio, 2011, Propagation failure along myelinated nerves, J. Nonlinear Sci., 21, 499, 10.1007/s00332-010-9090-x Kurata, 2009, Stationary pattern formation in a discrete excitable system with strong inhibitory coupling, Phys. Rev. E, 79, 056203, 10.1103/PhysRevE.79.056203 Weise, 2011, A discrete model to study reaction–diffusion-mechanics systems, PLoS One, 6, e21934, 10.1371/journal.pone.0021934 Weise, 2011, New mechanism of spiral wave initiation in a reaction–diffusion-mechanics system, PLoS One, 6, e27264, 10.1371/journal.pone.0027264 Lin, 2010, Traveling waves in delayed lattice dynamical systems with competition interactions, Nonlinear Anal. RWA, 11, 3666, 10.1016/j.nonrwa.2010.01.013 Lv, 2012, Nonlinear stability of traveling wave fronts for delayed reaction–diffusion systems, Nonlinear Anal. RWA, 13, 1854, 10.1016/j.nonrwa.2011.12.013 Vallès-Codina, 2011, Traveling echo waves in an array of excitable elements with time-delayed coupling, Phys. Rev. E, 83, 036209, 10.1103/PhysRevE.83.036209