Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Độ biến thiên của đạo hàm vận tốc trong các hiện tượng nhiễu loạn đồng nhất và phương pháp đo bằng dây nóng
Tóm tắt
Chúng tôi nghiên cứu ảnh hưởng của độ phân giải dây nóng đến việc đo lường độ biến thiên của đạo hàm vận tốc trong nhiễu loạn đồng nhất và đồng đều. Các cấu hình dây đơn và dây chéo (với các độ dài và khoảng cách khác nhau của các dây và độ phân giải lấy mẫu tạm thời) được xem xét. Các dự đoán về độ suy giảm dựa trên một mô hình cho phổ năng lượng được so sánh với dữ liệu thực nghiệm và số liệu mô phỏng trong nhiễu loạn lưới và hộp, tương ứng. Kết quả cho thấy rằng sự điều chỉnh dựa trên mô hình là chính xác cho dây đơn nhưng không cho dây chéo. Trong trường hợp sau, ảnh hưởng của khoảng cách giữa các dây ngược lại so với những gì được tìm thấy trong các thí nghiệm và mô phỏng. Hơn nữa, độ suy giảm dự đoán bởi dữ liệu số liệu rất phù hợp với những gì được quan sát trong thí nghiệm. Đối với cả hai cấu hình đầu dò, độ phân giải lấy mẫu có tác động suy giảm đáng kể, nhưng đối với đầu dò X, tác động của khoảng cách giữa các dây quan trọng hơn. Trong cả hai trường hợp, độ dài của các dây chỉ có ảnh hưởng nhỏ, trong phạm vi không chiều của độ dài dây được nghiên cứu. Cuối cùng, dữ liệu thực nghiệm hiện tại hỗ trợ kết luận rằng độ biến thiên là không đổi theo số Reynolds, phù hợp với lý thuyết 41 của Kolmogorov.
Từ khóa
#nhiễu loạn đồng nhất #đạo hàm vận tốc #độ biến thiên #dây nóng #phổ năng lượngTài liệu tham khảo
Antonia RA, Orlandi P (2004) Similarity of decaying isotropic turbulence with a passive scalar. J Fluid Mech 505:123–151
Batchelor GK (1953) The theory of homogeneous turbulence. Cambridge University Press, Cambridge
Bhatnagar P, Gross E, Krook M (1954) A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys Rev 94:511–525
Bremhorst K (1972) The effect of wire length and separation on X -array hot-wire anemometer measurements. IEEE Trans Instrum Meas IM-21:244–248
Browne LWB, Antonia RA (1987) The effect of wire length on temperature statistics in a turbulent wake. Exp Fluids 5:426–428
Burattini P, Antonia RA (2005) The effect of different X -wire calibration schemes on some turbulence statistics. Exp Fluids 38(1):80–89
Burattini P, Lavoie P, Agrawal A, Djenidi L, Antonia RA (2006) Power law of decaying homogeneous isotropic turbulence at low Reynolds number. Phys Rev E 73(066304)
Burattini P, Kinet M, Carati D, Knaepen B (2007) Corrections for underresolved scalar measurements in turbulent flows using a DNS database. Exp Fluids 43(1):31–37. doi:10.1007/s00348-007-0309-z
Champagne FH (1978) The fine-scale structure of the turbulent velocity field. J Fluid Mech 86:67–108
Champagne FH, Sleicher CA, Wehrmann OH (1967) Turbulence measurements with inclined hot-wires. Part 1. Heat transfer experiments with inclined hot-wire. J Fluid Mech 28:153–175
Derksen RW, Azad RS (1983) An examination of hot-wire length corrections. Phys Fluids 26:1751–1754
Elsner JW, Domaga\la P, Elsner W (1993) Effect of finite spatial resolution of hot-wire anemometry on measurements of turbulence energy dissipation. Meas Sci Technol 4:517–523
Ferchichi M, Tavoularis S (2000) Reynolds number effects on the fine structure of uniformly sheared turbulence. Phys Fluids 12(11):2942–2953
Gamard S, George WK (1999) Reynolds number dependence of energy spectra in the overlap region of isotropic turbulence. Flow Turbul Combust 63(1):443–477
George WK (1992) The decay of homogeneous isotropic turbulence. Phys Fluids A 4:1492–1509
Gotoh T, Fukayama D, Nakano T (2002) Velocity field statistics in homogeneous steady turbulence obtained using a high-resolution direct numerical simulation. Phys Fluids 14:1065–1081
Gylfason A, Ayyalasomayajula S, Warhaft Z (2004) Intermittency, pressure and acceleration statistics from hot-wire measurements in wind-tunnel turbulence. J Fluid Mech 501:213–229
Ishihara T, Kaneda Y, Yokokawa M, Itakura K, Uno A (2005) Energy spectrum in the near dissipation range of high resolution direct numerical simulation of turbulence. J Phys Soc Jpn 74:1464–1471
Jörgensen F (1971) Directional sensitivity of wire and hot-film probes. DISA Inf 11:31–37
Kerr RM (1985) High-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence. J Fluid Mech 153:31–58
Kistler AL, Vrebalovich T (1966) Grid turbulence at large Reynolds numbers. J Fluid Mech 26:37–47
Kolmogorov AN (1941) Dissipation of energy in the locally isotropic turbulence. Dokl Akad Nauk SSSR 32(1) (English translation in Proc R Soc Lond A 434:15–17)
Kolmogorov AN (1962) A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J Fluid Mech 13:82–85
Larssen JV, Devenport WJ (2002) The generation of high Reynolds number homogeneous turbulence. AIAA Paper 2002-2861
Lavoie P, Burattini P, Djenidi L, Antonia RA (2005) Effect of initial conditions on decaying grid turbulence at low R λ. Exp Fluids 39(5):865–874
Lavoie P, Djenidi L, Antonia R (2007) Effects of initial conditions in decaying turbulence generated by passive grids. J Fluid Mech 585:395–420
Maier RS, Bernard RS, Grunau DW (1996) Boundary conditions for the lattice Boltzmann method. Phys Fluids 8(7):1788–1801
Mansour NN, Wray AA (1994) Decay of isotropic turbulence at low Reynolds number. Phys Fluids 6(2):808–814
Martinez DO, Chen S, Doolen GD, Kraichnan RH, Wang LP, Zhou Y (1997) Energy spectrum in the dissipation range of fluid turbulence. J Plasma Phys 57:195–201
Mathieu J, Scott J (2000) An introduction to turbulent flow. Cambridge University Press, Cambridge
Michelet S, Antoine Y, Lemoine F, Mahouast M (1998) Direct measurement of the kinetic energy dissipation rate of turbulence using 2D LDA: application to grid-generated turbulent flow. C R Acad Sci Paris 326:621–626
Monin AS, Yaglom AM (1975) Statistical fluid mechanics: mechanics of turbulence, vol 2. MIT Press, Cambridge
Mydlarski L, Warhaft Z (1996) On the onset of high-Reynolds-number grid-generated wind tunnel turbulence. J Fluid Mech 320:331–368
Nelkin M (1994) Universality and scaling in fully developed turbulence. Adv Phys 43:143–181
Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge
Roberts JB (1973) On the correction of hot-wire turbulence measurements for spatial resolution errors. Aeronaut J 77:406–412
Schedvin J, Stegen GR, Gibson CH (1974) Universal similarity at high grid Reynolds numbers. J Fluid Mech 65:561–579
Smith LM, Reynolds WC (1991) The dissipation-range spectrum and the velocity-derivative skewness in turbulent flows. Phys Fluids A 3(5):992–994
Sreenivasan KR, Antonia RA (1997) The phenomenology of small-scale turbulence. Ann Rev Fluid Mech 29:435–472
Suzuki Y, Kasagi N (1992) Evaluation of hot-wire measurements in wall shear turbulence using a direct numerical simulation database. Exp Therm Fluid Sci 5:69–77
Tabeling P, Zocchi G, Belin F, Maurer J, Willaime H (1996) Probability density functions, skewness, and flatness in large Reynolds number turbulence. Phys Rev E 53:1613–1621
Tavoularis S, Bennett JC, Corrsin S (1978) Velocity-derivative skewness in small Reynolds number, nearly isotropic turbulence. J Fluid Mech 88:63–69
Taylor GI (1938) Production and dissipation of vorticity in a turbulent fluid. Proc R Soc Lond A, pp 15–23
Turan F, Azad RS (1993) Comparison of the zero-wire-length dissipation technique with spectral corrections and the effect of high turbulence intensity. Meas Sci Technol 6(3):292–308
Uberoi MS, Kovasznay LSG (1953) On mapping and measurements of random fields. Q Appl Math 10:375–393
Van Atta CW, Antonia RA (1980) Reynolds number dependence of skewness and flatness factors of turbulent velocity derivatives. Phys Fluids 23:252–257
Vincent A, Meneguzzi M (1991) The spatial structure and statistical properties of homogeneous turbulence. J Fluid Mech 225:1–20
Wyngaard JC (1968) Measurement of small-scale turbulence structure with hot wires. J Phys E Sci Instrum 1:1105–1108
Wyngaard JC (1969) Spatial resolution of the vorticity meter and other hot-wire arrays. J Phys E Sci Instrum 2:983–987
Zhu Y, Antonia RA (1995) Effect of wire separation on X -probe measurements in a turbulent flow. J Fluid Mech 287:199–223
Zhu Y, Antonia RA (1996) The spatial resolution of hot-wire arrays for the measurement of small-scale turbulence. Meas Sci Technol 7:1349–1359
Zou Q, He X (1997) On pressure and velocity boundary conditions for the lattice Boltzmann BKG model. Phys Fluids 9:1591–1598
