Vegetation‐modulated landscape evolution: Effects of vegetation on landscape processes, drainage density, and topography

American Geophysical Union (AGU) - Tập 110 Số F2 - 2005
Erkan Istanbulluoglu1, Rafael L. Bras1
1Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

Tóm tắt

Topography acts as a template for numerous landscape processes that include hydrologic, ecologic, and biologic phenomena. These processes not only interact with each other but also contribute to shaping the landscape as they influence geomorphic processes. We have investigated the effects of vegetation on thresholds for channel initiation and landform evolution using both analytical and numerical approaches. Vegetation is assumed to form a uniform ground cover. Runoff erosion is modeled based on a power function of excess shear stress, in which shear stress efficiency is inversely proportional to vegetation cover. This approach is validated using data. Plant effect on slope stability is represented by additional cohesion provided by plant roots. Vegetation cover is assumed to reduce sediment transport rates due to physical creep processes (rainsplash, dry ravel, and expansion and contraction of sediments) according to a negative exponential relationship. Vegetation grows as a function of both available cover and unoccupied space by plants and is killed by geomorphic disturbances (runoff erosion and landsliding) and wildfires. Analytical results suggest that in an equilibrium basin with a fixed vegetation cover, plants may cause a transition in the dominant erosion process at the channel head. A runoff erosion–dominated landscape, under none or poor vegetation cover, may become landslide dominated under a denser vegetation cover. The sign of the predicted relationship between drainage density and vegetation cover depends on the relative influence of vegetation on different erosion phenomena. With model parameter values representative of the Oregon Coast Range (OCR), numerical experiments conducted using the Channel Hillslope Integrated Landscape Development (CHILD) model confirm the findings based on the analytical theory. A highly dissected fluvial landscape emerges when surface is assumed bare. When vegetation cover is modeled, landscape relief increases, resulting in hollow erosion dominated by landsliding. Interestingly, our simulations underscore the importance of vegetation disturbances by geomorphic events and wildfires on the landscape structure. Simulated landscapes resemble real‐world catchments in the OCR when such disturbances are considered.

Từ khóa


Tài liệu tham khảo

Abe K., 1991, Effect of tree roots on shallow‐seated landslides, USDA For. Serv. Gen. Tech. Rep., 130, 11

10.1016/0341-8162(94)90057-4

10.1016/0169-555X(95)00027-3

Alberts E. E., 1995, USDA—Water Erosion Prediction Project, 7.1

American Society of Civil Engineers(1996) Hydrology handbook Manuals Rep. Eng. Prac.28 2nd ed. 784 pp. New York.

Arnold J. G., 1995, USDA—Water Erosion Prediction Project, 8.1

10.1029/93WR03346

10.1029/97WR02388

10.1002/esp.3290160207

10.1016/S0022-1694(02)00118-X

Burroughs E. R. andB. R.Thomas(1977) Declining root strength in Douglas‐fir after felling as a factor in slope stability USDA For. Serv. Res. Pap. INT‐190 27 pp. For. and Range Exp. Stn. Ogden Utah.

Carson M. A., 1972, Hillslope Form and Processes

10.1029/2003JF000028

Cotton C. A., 1955, New Zealand Geomorphology

Davis F. W. E. A.Keller A.Parikh andJ.Florsheim(1989) Recovery of the chaparral riparian zone after wildfire For. Serv. Gen. Tech. Rep. PSW‐110 pp.194–203 U.S. Dept. of Agric. Washington D. C.

Dietrich W. E., 1986, Hillslope Processes, 361

10.1086/648220

10.1130/SPE252-p1

10.1029/WR014i005p00713

10.1017/CBO9780511535680

10.1061/TACEAT.0006666

Engelund F., 1967, A Monograph on Sediment Transport in Alluvial Streams

Engman E. T., 1986, Roughness coefficients for routing surface runoff, J. Irrig. Drainage Eng., 112, 39, 10.1061/(ASCE)0733-9437(1986)112:1(39)

10.1016/j.advwatres.2003.05.001

10.1016/0341-8162(96)00005-7

Foster G. R., 1982, Hydrologic Modeling of Small Watersheds, 295

10.1029/WR004i006p01179

Foster G. R., 1995, USDA‐Water Erosion Prediction Project, 11.1

Freeman G. E. W. J.Rahmeyer andR. R.Copelan(2000) Determination of resistance due to shrubs and woody vegetation Rep. ERDC/CHL TR‐00‐25 62 pp. U.S. Army Corps of Eng. Washington D. C.

10.1029/2001JB001686

10.1029/2001WR000656

10.1029/2003WR002341

Gilley J. E., 1995, USDA‐Water Erosion Prediction Project, 10.1

10.1002/esp.3290110506

Gray D. H. andW. F.Megahan(1981) Forest vegetation removal and slope stability in the Idaho Batholith USDA For. Serv. Res. Pap. INT‐271 23 pp. Intermt. For. and Range. Exper. Stn. Ogden Utah.

Gregory K. J., 1976, Geomorphology and Climate, 289

Gregory K. J., 1975, Drainage density and climate, Z. Geomorph. N. F., 19, 287, 10.1127/zfg/19/1975/287

Hack J. T. andJ. C.Goodlett(1960) Geomorphology and forest ecology of a mountain region in the Central Appalachians U.S. Geol. Surv. Prof. Pap. 347 66 pp.

10.1029/RF004p0313

Hawk K. L.(1992) Climatology of station storm rainfall in the continental United States: Parameters of the Bartlett‐Lewis and Poisson rectangular pulse models M.S. thesis 330 pp. Dep. of Civ. and Environ. Eng. Mass. Inst. of Technol. Cambridge.

10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2

Howard A. D., 1980, Thresholds in Geomorphology, 227

10.1029/94WR00757

10.1002/(SICI)1096-9837(199703)22:3<211::AID-ESP749>3.0.CO;2-E

10.1130/0016-7606(1983)94<739:CCIB>2.0.CO;2

10.1016/S0169-555X(02)00347-1

10.1029/2001WR000782

10.1029/2002WR001467

10.1029/2003JF000041

Jahn A., 1981, Some regularities of soil movement on the slope as exemplified by the observations in Sudety Mts., Trans. Jpn. Geomorphol. Union, 2, 321

10.2307/521387

Karsian E. A.(1995) A 6800‐year vegetation and fire history in the Bitterroot Range Montana M.S. thesis Univ. of Montana Bozeman.

10.1130/0016-7606(1994)106<0840:CLEAAF>2.3.CO;2

10.1130/0091-7613(2001)029<0591:MEOYKY>2.0.CO;2

Kirkby M. J., 1971, Hillslope process‐response models based on the continuity equation, Inst. Brit. Geogr. Spec. Publ., 3, 15

10.1080/02626666709493533

10.1016/j.geomorph.2004.02.013

Laflen J. M., 1991, WEPP soil erodibility experiments for rangeland and cropland soils, J. Soil Water Conserv., 46, 39

10.1016/S0309-1708(01)00007-0

10.1029/2001WR001227

10.1029/TR039i006p01076

Laursen E. M., 1958, The total sediment load of streams, Proc. Am. Soc. Civ. Eng. J. Hydraul. Div., 84, 1

10.1093/besa/15.3.237

Long C. J.(1995) Fire history of the Central Oregon Coast Range Oregon: 9000‐year record from Little Lake M.S. thesis 147 pp. Univ. of Oreg. Eugene.

Malmon D., 1996, Sediment transport rates by rainsplash based on field measurements, Eos Trans. AGU, 77

10.1111/j.1752-1688.2002.tb05549.x

10.1130/0091-7613(1993)021<0343:QOSPAD>2.3.CO;2

Megahan W. F., 1978, Fifth North American Forest Soils Conference, 116

Melton M. A.(1957) An analysis of the relations among elements of climate surface properties and geomorphology Dept. Geol. Columbia Univ. Tech. Rep. 11 Proj. NR 389‐042 Off. of Nav. Res. New York.

Meyer G. A., 1997, Fire‐related sedimentation events on alluvial fans, Yellowstone National Park, USA, J. Sediment. Res., 67, 776

10.1002/hyp.389

10.1029/97WR03347

10.1029/95WR02036

10.1029/97WR02709

10.2475/ajs.301.4-5.432

10.1038/336232a0

10.1029/WR025i008p01907

Montgomery D. R., 1994, Process Models and Theoretical Geomorphology, 221

10.2136/sssaj1986.03615995005000040009x

10.1071/SR9890001

10.1002/esp.3760050405

10.1029/97WR00013

10.1002/(SICI)1096-9837(199908)24:8<677::AID-ESP981>3.0.CO;2-1

10.1029/1998WR900069

10.1029/2000JC900145

10.3733/hilg.v42n07p215

10.1029/95JB01684

10.1002/(SICI)1096-9837(199606)21:6<517::AID-ESP609>3.0.CO;2-N

10.1016/S0309-1708(01)00006-9

10.1029/2002JD002448

Prosser I. P., 1996, Advances in Hillslope Processes, 687

10.1029/95WR02218

10.1130/0091-7613(1994)022<1127:GFATRO>2.3.CO;2

10.1029/98WR02513

10.1016/0169-555X(95)00020-6

Puigdefábregas J., 1996, Advances in Hillslope Processes, 1027

10.1016/0022-1694(88)90004-2

10.13031/2013.35498

10.1002/esp.3290160405

10.1029/1998WR900090

10.1130/0091-7613(2001)029<0143:HEBNCA>2.0.CO;2

10.1130/0091-7613(2002)030<1115:STDBBP>2.0.CO;2

10.1139/t02-113

10.1139/t01-031

Selby M. J., 1974, Rates of creep in pumiceous soils and deposits, central North Island, New Zealand, N. Z. J. Sci., 17, 47

Selby M. J., 1993, Hillslope Materials and Processes

10.1029/92WR00804

10.1029/GM107p0237

10.1029/2003WR002496

10.1029/WR008i006p01506

10.1029/2001WR001057

10.1016/0169-555X(92)90058-V

10.2307/1939377

10.1002/esp.1020

10.1029/98WR01474

10.1029/2000WR900065

10.1029/97WR00409

10.1029/2001JB000162

10.1016/S0169-555X(00)00056-8

10.1007/978-1-4615-0575-4_12

10.1016/S0098-3004(00)00134-5

10.1029/2001WR000768

10.1130/REG7-p105

10.2475/ajs.301.4-5.313

10.1029/2000JB000044

10.1029/91WR00935

10.2475/ajs.273.4.335

Woolhiser D. A. R. E.Smith andD. C.Goodrich(1990) KINEROS a kinematic runoff and erosion model: Documentation and user manual Rep. ARS‐77 130 pp. U.S. Dep. of Agric. Agric. Res. Serv. Tuscon Ariz.

10.1029/95WR01136

Yang C. T.(1996) Sediment Transport: Theory and Practice 396 pp. McGraw‐Hill New York.

Young A., 1972, Slopes