Vectorial scale-based fuzzy-connected image segmentation
Tài liệu tham khảo
Cho, 1993
Pal, 1993, A review of image segmentation techniques, Pattern Recognition, 26, 1277, 10.1016/0031-3203(93)90135-J
Morgenthaler, 1981, Multidimensional edge detection by hypersurface fitting, IEEE Trans. Pattern Anal. Mach. Intell., 3, 482, 10.1109/TPAMI.1981.4767134
Kass, 1987, Snakes: active contour models, Int. J. Comput. Vis., 1, 321, 10.1007/BF00133570
McInerney, 1996, Deformable models in medical image analysis: a survey, Med. Image Anal., 1, 91, 10.1016/S1361-8415(96)80007-7
Sapiro, 1997, Color snakes, Comput. Vis. Image Understand., 68, 247, 10.1006/cviu.1997.0562
Falcão, 1998, User-steered image segmentation paradigms: live wire and live lane, Graph. Models Image Process., 60, 233, 10.1006/gmip.1998.0475
E. Mortensen, W. Barrett, Intelligent scissors for image composition, in: Proc. SIGGRAPH’95, Los Angeles, USA, 1995, pp. 191–198.
Cootes, 1995, Active shape models-their training and application, Comput. Vis. Image Understand., 61, 38, 10.1006/cviu.1995.1004
Cootes, 2001, Active appearance models, IEEE Trans. Pattern Anal. Mach. Intell., 23, 681, 10.1109/34.927467
Sethian, 1996
Otsu, 1979, A threshold selection method from gray-level histogram, IEEE Trans. Systems, Man Cybernet., 9, 62, 10.1109/TSMC.1979.4310076
Wong, 1989, A gray-level threshold selection method based on maximum entropy principle, IEEE Trans. Systems, Man, Cybernet., 19, 866, 10.1109/21.35351
Chang, 1994, Adaptive image region-growing, IEEE Trans. Image Process., 3, 868, 10.1109/83.336259
Cover, 1967, Nearest neighbor pattern classification, IEEE Trans. Informat. Theory, 13, 21, 10.1109/TIT.1967.1053964
Duda, 1973
Trivedi, 1986, Low-level segmentation of aerial images with fuzzy clustering, IEEE Trans. Systems, Man, Cybernet., 16, 589, 10.1109/TSMC.1986.289264
Lim, 1990, On the color image segmentation algorithm based on the thresholding and the fuzzy c-means technique, Pattern Recognit., 23, 935, 10.1016/0031-3203(90)90103-R
Boykov, 2001, Fast approximate energy minimization via graph cuts, IEEE Trans. Pattern Anal. Mach. Intell., 23, 1222, 10.1109/34.969114
Wu, 1993, An optimal graph theoretic approach to data clustering: theory and its application to image segmentation, IEEE Trans. Pattern Anal. Mach. Intell., 15, 1101, 10.1109/34.244673
Marroquin, 2002, An accurate and efficient Bayesian method for automatic segmentation of brain MRI, IEEE Trans. Med. Imag., 21, 934, 10.1109/TMI.2002.803119
Li, 1995
Zhang, 2001, Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm, IEEE Trans. Med. Imag., 20, 45, 10.1109/42.906424
Held, 1997, Markov random field segmentation of brain MR images, IEEE Trans. Med. Imag., 16, 878, 10.1109/42.650883
Rajapakse, 1998, Segmentation of MR images with intensity inhomogeneities, Image Vis. Comput., 16, 165, 10.1016/S0262-8856(97)00067-X
Z. Kato, Bayesian color image segmentation using reversible jump Markov chain Monte Carlo, CWI Research Report PNA-R9902, ISSN 1386-3711, 1999.
S. Beucher, F. Meyer, The morphological approach to segmentation: The watershed transformation, in: Mathematical Morphology in Image Processing, vol. 12, Marcel Dekker, USA, 1993, pp. 433–481.
Vanhamel, 2003, Multiscale gradient watersheds of color images, IEEE Trans. Image Process., 12, 617, 10.1109/TIP.2003.811490
Chu, 1993, The integration of image segmentation maps using region and edge information, IEEE Trans. Pattern Anal. Mach. Intell., 15, 1241, 10.1109/34.250843
Chakraborty, 1996, Deformable boundary finding in medical images by integrating gradient and region information, IEEE Trans. Med. Imag., 15, 859, 10.1109/42.544503
T. Jones, D.N. Metaxas, Automated 3D segmentation using deformable models and fuzzy affinity, in: Proc. Information Processing in Medical Imaging, Poultney, USA, 1997, pp. 113–126.
C. Imielinska, D. Metaxas, J.K. Udupa, Y. Jin, T. Chen, Hybrid segmentation of anatomical data. in: Proc. MICCAI, vol. 2208, Utrecht, The Netherlands, 2001, pp. 1048–1057.
Zhu, 1996, Region competition: unifying snakes, region growing, and Bayes/MDL for multiband image segmentation, IEEE Trans. Pattern Anal. Mach. Intell., 18, 884, 10.1109/34.537343
Bezdek, 1992
A. Kaufmann, Introduction to the Theory of Fuzzy Subsets, vol. 1, Academic Press, New York, 1975.
Rosenfeld, 1979, Fuzzy digital topology, Informat. Control, 40, 76, 10.1016/S0019-9958(79)90353-X
Bloch, 1993, Fuzzy connectivity and mathematical morphology, Pattern Recognit. Lett., 14, 483, 10.1016/0167-8655(93)90028-C
Udupa, 1996, Fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation, Graph. Models Image Process., 58, 246, 10.1006/gmip.1996.0021
Saha, 2000, Scale-based fuzzy connected image segmentation: theory, algorithms, and validation, Comput. Vis. Image Understand., 77, 145, 10.1006/cviu.1999.0813
Saha, 2001, Relative fuzzy connectedness among multiple objects: theory, algorithms, and applications in image segmentation, Comput. Vis. Image Understand., 82, 42, 10.1006/cviu.2000.0902
Udupa, 2002, Relative fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation, IEEE Trans. Pattern Anal. Mach. Intell., 24, 1485, 10.1109/TPAMI.2002.1046162
Herman, 2001, Multiseeded segmentation using fuzzy connectedness, IEEE Trans. Pattern Anal. Mach. Intell., 23, 460, 10.1109/34.922705
Nyúl, 2003, Fuzzy-connected 3D image segmentation at interactive speeds, Graph. Models, 64, 259, 10.1016/S1077-3169(02)00005-9
Saha, 2001, Fuzzy connected object delineation: axiomatic path strength definition and the case of multiple seeds, Comput. Vis. Image Understand., 83, 275, 10.1006/cviu.2001.0927
Udupa, 1997, Multiple sclerosis lesion quantification using fuzzy connectedness principles, IEEE Trans. Med. Imag., 16, 598, 10.1109/42.640750
Liu, 2003, System for upper airway segmentation and measurement with MR imaging and fuzzy connectedness, Acad. Radiol., 10, 13, 10.1016/S1076-6332(03)80783-3
Lei, 2001, Artery–vein separation via MRA—an image processing approach, IEEE Trans. Med. Imag., 20, 689, 10.1109/42.938238
Saha, 2001, Breast tissue density quantification via digitized mammograms, IEEE Trans. Med. Imag., 20, 792, 10.1109/42.938247
Moonis, 2002, Estimation of tumor volume using fuzzy connectedness segmentation of MRI, Am. J. Neuroradiol., 23, 356
Liang, 1994, Parameter estimation and tissue segmentation from multispectral MR images, IEEE Trans. Med. Imag., 13, 441, 10.1109/42.310875
J.K. Udupa, V.R. LeBlanc, H. Schmidt, C. Imielinska, P.K. Saha, G.J. Grevera, Y. Zhuge, L.M. Currie, P. Molholt, Y. Jin, Methodology for evaluating image segmentation algorithms, in: Proc. SPIE Medical Imaging, vol. 4684, San Diego, USA, 2002, pp. 266–277.
L.G. Nyúl, J.K. Udupa, A protocol-independent brain MRI segmentation method, in: Proc. SPIE Medical Imaging, vol. 4684, San Diego, USA, 2002, pp. 1588–1599.
Y. Zhuge, J.K. Udupa, J. Liu, P.K. Saha, T. Iwanaga, A scale-based method for correcting background intensity variation in acquired images, in: Proc. SPIE Medical Imaging, vol. 4684, San Diego, USA, 2002, pp. 1103–1111.
Styner, 2000, Parametric estimate of intensity inhomogeneities applied to MRI, IEEE Trans. Med. Imag., 19, 153, 10.1109/42.845174
Collins, 1998, Design and construction of a realistic digital brain phantom, IEEE Trans. Med. Imag., 17, 463, 10.1109/42.712135
Nyúl, 1999, On standardizing the MR image intensity scale, Magn. Reson. Med., 42, 1072, 10.1002/(SICI)1522-2594(199912)42:6<1072::AID-MRM11>3.0.CO;2-M
J.K. Udupa, D. Odhner, S. Samarasekera, R.J. Goncalves, K. Iyer, K. Venugopal, S. Furuie, 3DVIEWNIX: an open, transportable, multidimensional multimodality, multiparametric imaging software system, in: Proc. SPIE Medical Imaging, vol. 2164, Newport Beach, USA, 1994, pp. 58–73 (Also downloadable from www.mipg.uenn.edu).
A.S. Pednekar, I.A. Kakadiaris, Adaptive fuzzy connectedness-based medical image segmentation, in: Proc. Indian Conf. on Computer Vision, Graphics, and Image Processing, Ahmadabad, India, 2003, pp. 457–462.