Varved lake sediments as indicators of recent cultural eutrophication and hypolimnetic hypoxia in lakes
Tài liệu tham khảo
Adrian, 2009, Lakes as sentinels of climate change, Limnol. Oceanogr., 54, 2283, 10.4319/lo.2009.54.6_part_2.2283
Apolinarska, 2020, The recent deposition of laminated sediments in highly eutrophic Lake Kierskie, western Poland: 1 year pilot study of limnological monitoring and sediment traps, J. Paleolimnol., 63, 283, 10.1007/s10933-020-00116-2
Bartosiewicz, 2019, Effects of climate change and episodic heat events on cyanobacteria in a eutrophic polymictic lake, Sci. Total Environ., 693, 10.1016/j.scitotenv.2019.07.220
Bennett, 1996, Determination of the number of zones in a biostratigraphical sequence, New Phytol., 132, 155, 10.1111/j.1469-8137.1996.tb04521.x
Bhagowati, 2019, A review on lake eutrophication dynamics and recent developments in lake modeling, Ecohydrol. Hydrobiol., 19, 155, 10.1016/j.ecohyd.2018.03.002
Białecki, T., 1971. Z dziejów ziemi Łobeskiej. Instytut Zachodniopomorski, Szczecin.
Biskup, M., 1974. Dzieje Szubina: praca zbiorowa. Państwowe Wydawnictwa Naukowe, Poznań, Warszawa.
Błachnio, J., 1948. Monografia Powiatu Grudziądzkiego. Wydz. Powiatowy, Grudziądz.
Bonk, 2015, Modern limnology and varve-formation processes in lake Żabińskie, northeastern Poland: comprehensive process studies as a key to understand the sediment record, J. Limnol., 74
Bonk, 2016, Sedimentological and geochemical responses of Lake Żabińskie (north-eastern Poland) to erosion changes during the last millennium, J. Paleolimnol., 56
Bonk, 2021, Varve microfacies and chronology from a new sediment record of Lake Gościąż (Poland), Quat. Sci. Rev., 251, 10.1016/j.quascirev.2020.106715
Bork, 2003, Quantification of past soil erosion and land use/land cover changes in Germany, 232
Brauer, 2001, Chronology and depositional processes of the laminated sediment record from Lac d′Annecy, French Alps, J. Paleolimnol., 25, 163, 10.1023/A:1008136029735
Canfield, 2010, The evolution and future of earth’s nitrogen cycle, Science, 330, 192 LP, 10.1126/science.1186120
Carpenter, 2005, Eutrophication of aquatic ecosystems: bistability and soil phosphorus, Proc. Natl. Acad. Sci. USA, 102, 10002, 10.1073/pnas.0503959102
Croudace, 2019, High resolution XRF core scanners: a key tool for the environmental and palaeoclimate sciences, Quat. Int., 514, 1, 10.1016/j.quaint.2019.05.038
Cybulska, 1971, Z dziejów powiatu łobeskiego w latach 1800-1939, 87
Davison, 1993, Iron and manganese in lakes, Earth-Sci. Rev., 34, 119, 10.1016/0012-8252(93)90029-7
Falkowski, J., 1984. Rolnictwo i leśnictwo. In: Galon, R. (Ed.), Województwo Toruńskie: Przyroda – Ludność i Osadnictwo – Gospodarka. PWN, Poznań.
Flynn, 1968, The determination of low levels of polonium-210 in environmental materials, Anal. Chim. Acta, 43, 221, 10.1016/S0003-2670(00)89210-7
Fojutowski, 2021, Spatio-temporal differences of sediment accumulation rate in the Lake Gościąż (Central Poland) as a response of meteorological conditions and lake basin morphometry, Cuad. Investig. Geogr., 10.18172/cig.4724
Foley, 2012, Long-term changes in oxygen depletion in a small temperate lake: effects of climate change and eutrophication, Freshw. Biol., 57, 278, 10.1111/j.1365-2427.2011.02662.x
Frankiewicz, 1971, Z dziejów gospodarczych powiatu łobeskiego w okresie II wojny światowej, 145
Galon, R., 1984. Województwo toruńskie: przyroda – ludność i osadnictwo – gospodarka. PWN, Poznań.
Haliuc, 2020, Climate and land-use as the main drivers of recent environmental change in a mid-altitude mountain lake, Romanian Carpathians, PLOS One, 15, 10.1371/journal.pone.0239209
Holmer, 2001, Sulphate reduction and sulphur cycling in lake sediments: a review, Freshw. Biol., 46, 431, 10.1046/j.1365-2427.2001.00687.x
Huisman, 2018, Cyanobacterial blooms, Nat. Rev. Microbiol., 16, 471, 10.1038/s41579-018-0040-1
Jenny, 2013, A spatiotemporal investigation of varved sediments highlights the dynamics of hypolimnetic hypoxia in a large hard-water lake over the last 150 years, Limnol. Oceanogr., 58, 1395, 10.4319/lo.2013.58.4.1395
Jenny, 2014, Inherited hypoxia: a new challenge for reoligotrophicated lakes under global warming, Glob. Biogeochem. Cycles, 28, 1413, 10.1002/2014GB004932
Jenny, 2016, Global spread of hypoxia in freshwater ecosystems during the last three centuries is caused by rising local human pressure, Glob. Chang. Biol., 22, 1481, 10.1111/gcb.13193
Jenny, 2016, Urban point sources of nutrients were the leading cause for the historical spread of hypoxia across European lakes, Proc. Natl. Acad. Sci., 113, 12655 LP, 10.1073/pnas.1605480113
Jokinen, 2015, Varve microfabric record of seasonal sedimentation and bottom flow-modulated mud deposition in the coastal northern Baltic Sea, Mar. Geol., 366, 79, 10.1016/j.margeo.2015.05.003
Juggins, S., 2020. rioja: Analysis of Quaternary Science Data.
Karpowicz, 2020, Zooplankton community responses to oxygen stress, Water, 12, 706, 10.3390/w12030706
Kienel, 2013, Modification of climate signals by human activities recorded in varved sediments (AD 1608-1942) of Lake Holzmaar (Germany), J. Paleolimnol., 50, 561, 10.1007/s10933-013-9749-z
Kinder, 2021, Detection of the historical Askja ad 1875 and modern Icelandic cryptotephras in varved lake sediments – results from a first systematic search in northern Poland, J. Quat. Sci., 36, 1, 10.1002/jqs.3259
Konopka, T., 2020. umap: Uniform Manifold Approximation and Projection. Available online: 〈https://CRAN.R-project.org/package=umap〉. (Accessed 21 February 2021).
Kosacki, J.N., Krzysztoń, J., 1991. Miasto i Gmina Węgorzyno. Słownik Krajoznawczy. Materiały z inwentaryzacji krajoznawczej woj. szczecińskiego. Regionalna Pracowania Krajoznzwcza PTTK, Szczecin.
Kwiatkowska, E., 1984. Osadnictwo wiejskie. In: Galon, R. (Ed.), Województwo Toruńskie: Przyroda – Ludność i Osadnictwo – Gospodarka. PWN, Poznań.
Lacey, 2018, Assessing human impact on Rostherne Mere, UK, using the geochemistry of organic matter, Anthropocene, 21, 52, 10.1016/j.ancene.2018.02.002
Laskowski, 1971, Dotychczasowa i zamierzona intensywnośc rolnictwa w powiecie Łobez
Lotter, 1998, The recent eutrophication of Baldeggersee (Switzerland) as assessed by fossil diatom assemblages, Holocene, 8, 395, 10.1191/095968398674589725
Lotter, 1997, The separation of the influence of nutrients and climate on the varve time-series of baldeggersee, Switzerland, Aquat. Sci., 59, 362, 10.1007/BF02522364
Lotter, 1997, Varve formation since 1885 and high-resolution varve analyses in hypertrophic Baldeggersee (Switzerland), Aquat. Sci., 59, 304, 10.1007/BF02522361
Lüder, 2006, Palaeoenvironmental reconstructions based on geochemical parameters from annually laminated sediments of Sacrower See (northeastern Germany) since the 17th century, J. Paleolimnol., 35, 897, 10.1007/s10933-005-6188-5
Luterbacher, 2010, Circulation dynamics and its influence on European and Mediterranean January–April climate over the past half millennium: results and insights from instrumental data, documentary evidence and coupled climate models, Clim. Change, 101, 201, 10.1007/s10584-009-9782-0
Martin-Puertas, 2017, Varved sediment responses to early Holocene climate and environmental changes in Lake Meerfelder Maar (Germany) obtained from multivariate analyses of micro X-ray fluorescence core scanning data, J. Quat. Sci., 32, 427, 10.1002/jqs.2935
McInnes, L., Healy, J., Melville, J., 2020. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv:1802.03426 [cs, stat].
Millet, 2010, Reconstruction of the recent history of a large deep prealpine lake (Lake Bourget, France) using subfossil chironomids, diatoms, and organic matter analysis: towards the definition of a lake-specific reference state, J. Paleolimnol., 44, 963, 10.1007/s10933-010-9467-8
Nixdorf, 2015, Quantitative analysis of biogeochemically controlled density stratification in an iron-meromictic lake, Hydrol. Earth Syst. Sci., 19, 4505, 10.5194/hess-19-4505-2015
Ott, 2018, Site-specific sediment responses to climate change during the last 140 years in three varved lakes in Northern Poland, Holocene, 28, 464, 10.1177/0959683617729448
Padedda, 2017, Consequences of eutrophication in the management of water resources in Mediterranean reservoirs: a case study of Lake Cedrino (Sardinia, Italy), Glob. Ecol. Conserv., 12, 21, 10.1016/j.gecco.2017.08.004
Petterson, 1993, Spatial uniformity of sediment accumulation in varved lake sediments in northern Sweden, J. Paleolimnol., 9, 195, 10.1007/BF00677213
Poraj-Górska, 2017, Impact of historical land use changes on lacustrine sedimentation recorded in varved sediments of Lake Jaczno, northeastern Poland, Catena, 153, 182, 10.1016/j.catena.2017.02.007
Roeser, 2021, Advances in understanding calcite varve formation: new insights from a dual lake monitoring approach in the southern Baltic lowlands, Boreas, 50, 419, 10.1111/bor.12506
Sanchini, 2020, A Holocene high-resolution record of aquatic productivity, seasonal anoxia and meromixis from varved sediments of Lake Łazduny, North-Eastern Poland: insight from a novel multi-proxy approach, J. Quat. Sci., 35, 1070, 10.1002/jqs.3242
Scholtysik, 2020, Geochemical focusing and sequestration of manganese during eutrophication of Lake Stechlin (NE Germany), Biogeochemistry, 151, 313, 10.1007/s10533-020-00729-9
Schroeter, 2020, How to deal with multi-proxy data for paleoenvironmental reconstructions: applications to a holocene lake sediment record From the Tian Shan, Central Asia, Front. Earth Sci., 8, 10.3389/feart.2020.00353
Słabek, H., 1972. Dzieje polskiej reformy rolnej, 1944–48. Wiedza Powszechna, Warszawa.
Stanton, 2010, Validating a Swedish varve chronology using radiocarbon, palaeomagnetic secular variation, lead pollution history and statistical correlation, Quat. Geochronol., 5, 611, 10.1016/j.quageo.2010.03.004
Tang, Y., Horikoshi, M., Li, W., 2016. ggfortify: Unified Interface to Visualize Statistical Results of Popular R Packages. R J. 8. 〈https://doi.org/10.32614/RJ-2016-060〉.
R Core Team, 2020. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
Templ, 2011, robCompositions: an R-package for robust statistical analysis of compositional data, 341
Tylmann, 2012, Conditions for deposition of annually laminated sediments in small meromictic lakes: a case study of Lake Suminko (northern Poland), J. Paleolimnol., 47, 55, 10.1007/s10933-011-9548-3
Tylmann, 2013, Laminated lake sediments in northeast Poland: distribution, preconditions for formation and potential for paleoenvironmental investigation, J. Paleolimnol., 50, 487, 10.1007/s10933-013-9741-7
Tylmann, 2016, Calibrating 210Pb dating results with varve chronology and independent chronostratigraphic markers: Problems and implications, Quat. Geochronol., 32, 1, 10.1016/j.quageo.2015.11.004
2019
Weltje, 2008, Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: theory and application, Earth Planet. Sci. Lett., 274, 423, 10.1016/j.epsl.2008.07.054
Wickham, 2019, Welcome to the Tidyverse, J. Open Source Softw., 4, 1686, 10.21105/joss.01686
Wilhelm, 2008, Impact of summer warming on the thermal characteristics of a polymictic lake and consequences for oxygen, nutrients and phytoplankton, Freshw. Biol., 53, 226, 10.1111/j.1365-2427.2007.01887.x
Withers, 2014, Agriculture and eutrophication: where do we go from here?, Sustainability, 6, 5853, 10.3390/su6095853
Woolway, 2019, Worldwide alteration of lake mixing regimes in response to climate change, Nat. Geosci., 12, 271, 10.1038/s41561-019-0322-x
Zander, 2021, A high-resolution record of Holocene primary productivity and water-column mixing from the varved sediments of Lake Żabińskie, Poland, Sci. Total Environ., 755, 10.1016/j.scitotenv.2020.143713
Żarczyński, 2018, Multiple varve chronologies for the last 2000 years from the sediments of Lake Żabińskie (northeastern Poland) – comparison of strategies for varve counting and uncertainty estimations, Quat. Geochronol., 47, 107, 10.1016/j.quageo.2018.06.001
Żarczyński, 2019, Tracing lake mixing and oxygenation regime using the Fe/Mn ratio in varved sediments: 2000 year-long record of human-induced changes from Lake Żabińskie (NE Poland), Sci. Total Environ., 657, 585, 10.1016/j.scitotenv.2018.12.078
Zolitschka, 2015, Varves in lake sediments – a review, Quat. Sci. Rev., 117, 1, 10.1016/j.quascirev.2015.03.019
Corine Land Cover Data, 2021. 〈https://land.copernicus.eu/pan-european/corine-land-cover/clc2018〉. (Accessed 3 March 2021).
Detailed Geological Map of Poland (Szczegółowa Mapa Geologiczna Polski), 2021. 〈https://geologia.pgi.gov.pl〉. (Accessed 3 March 2021).
Local Data Bank (Bank Danych Lokalnych), 2021. 〈https://bdl.stat.gov.pl/BDL/start〉. (Accessed 3 March 2021).
Municipal Directory (Gemeindeverzeichnis), 2021. 〈https://gemeindeverzeichnis.de/〉. (Accessed 3 March 2021).
Institute of Meteorology and Water Management - National Research Institute, 2021. 〈https://www.imgw.pl/en〉. (Accessed 3 March 2021).
Generalstabskarte, 1893a. Sheet Exin (Kcynia), 1:100,000.
Generalstabskarte, 1893b. Sheet Briesen (Wąbrzeźno), 1:100,000.
Mapa Obrębowa Powiatów, 1964. powiat Łobez, 1:25,000, Zarząd Topograficzny Sztabu Generalnego.
Messtischblatt, 1890a. Sheet Dramburg, 2460(1064), 1:25,000, Königlich Preussische Landesaufnahme.
Messtischblatt, 1890b. Sheet Wangerin, 2459(1063), 1:25,000, Königlich Preussische Landesaufnahme.
Reymann's Special-Karte, 1806–1837a. Sheet Dramburg (Drawsko Pomorskie), 197(45), 1:200,000.
Reymann's Special-Karte, 1806–1837b. Sheet Graudenz (Grudziądz), 200(48), 1:200,000.
Schrötter, 1796–1802. Karte von Ost-Preussen nebst Preussisch Litthauen und West, Sheet Znin, 1:150,000.