Various aspects of inflammation in heart failure

Heart Failure Reviews - Tập 25 - Trang 537-548 - 2019
Mieczysław Dutka1, Rafał Bobiński1, Izabela Ulman-Włodarz1, Maciej Hajduga1, Jan Bujok1, Celina Pająk1, Michał Ćwiertnia2
1Faculty of Health Sciences, Department of Biochemistry and Molecular Biology, University of Bielsko-Biala, Bielsko-Biala, Poland
2Faculty of Health Sciences, Department of Emergency Medicine, University of Bielsko-Biala, Bielsko-Biala, Poland

Tóm tắt

Despite significant advances in the prevention and treatment of heart failure (HF), the prognosis in patients who have been hospitalised on at least one occasion due to exacerbation of HF is still poor. Therefore, a better understanding of the underlying pathophysiological mechanisms of HF is crucial in order to achieve better results in the treatment of this clinical syndrome. One of the areas that, for years, has aroused the interest of researchers is the activation of the immune system and the elevated levels of biomarkers of inflammation in patients with both ischaemic and non-ischaemic HF. Additionally, it is intriguing that the level of circulating pro-inflammatory biomarkers correlates with the severity of the disease and prognosis in this group of patients. Unfortunately, clinical trials aimed at assessing interventions to modulate the inflammatory response in HF have been disappointing, and the modulation of the inflammatory response has had either no effect or even a negative effect on the HF prognosis. The article presents a summary of current knowledge on the role of immune system activation and inflammation in the pathogenesis of HF. Understanding the immunological mechanisms pathogenetically associated with left ventricular remodelling and progression of HF may open up new therapeutic possibilities for HF.

Tài liệu tham khảo

Ponikowski P, Voors A, Anker SD, Bueno H, Cleland JGF et al (2016) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. EHJ (2016) 37(27):2129–2200. https://doi.org/10.1093/eurheartj/ehw128 Jones DP, Jyoti Patel J (2018) Therapeutic approaches targeting inflammation in cardiovascular disorders. Biology. 7(49):1–14. https://doi.org/10.3390/biology7040049 Nikolaos G, Frangogiannis MD (2014) The immune system and the remodeling infarcted heart: cell biological insights and therapeutic opportunities. J Cardiovasc Pharmacol 63(3):185–195. https://doi.org/10.1097/FJC.0000000000000003 Heymans S, Hirsch E, Anker SD, Aukrust P, Balligand JL et al (2009) Inflammation as a therapeutic target in heart failure? A scientific statement from the Translational Research Committee of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 11:119–129. https://doi.org/10.1093/eurjhf/hfn043 Katayama T (2003) Significance of acute-phase inflammatory reactants as an indicator of prognosis after acute myocardial infarction: which is the most useful predictor? J Cardiol 42:49–56 Pearson TA, Mensah GA, Wayne RA, Anderson JL, Cannon RO et al (2003) Markers of inflammation and cardiovascular disease application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation. 107:499–511 Seropian IM, Toldo S, Van Tassell BW, Abbate A (2014) Anti-inflammatory strategies for ventricular remodeling following ST-segment elevation acute myocardial infarction. J Am Coll Cardiol 63(16):1593–1603. https://doi.org/10.1016/j.jacc.2014.01.014 Mann DL (2015) Innate immunity and the failing heart: the cytokine hypothesis revisited. Circ Res 116(7):1254–1268. https://doi.org/10.1161/CIRCRESAHA.116.302317 Wrigley BJ, Lip GYH, Shantsila E (2015) The role of monocytes and inflammation in the pathophysiology of heart failure. Eur J Heart Fail 13:1161–1171. https://doi.org/10.1093/eurjhf/hfr122 Cheng JM, Akkerhuis KM, Battes LC, van Vark LC, Hillege HL et al (2013) Biomarkers of heart failure with normal ejection fraction: a systematic review. Eur J Heart Fail 15:1350–1362. https://doi.org/10.1093/eurjhf/hft106 Gruson D, Ahn SA, Rousseau MF (2011) Biomarkers of inflammation and cardiac remodeling: the quest of relevant companions for the risk stratification of heart failure patients is still ongoing. Biochemia Mediea 21(3):254–263 van Wezenbeek J, Canada JM, Ravindra K, Carbone S, Trankle CR et al (2018) C-reactive protein and N-terminal pro-brain natriuretic peptide levels correlate with impaired cardiorespiratory fitness in patients with heart failure across a wide range of ejection fraction. Front Cardiovasc Med 5(178):1–10 Elster SK, Braunwald E, Wood HF (1956) A study of C-reactive protein in the serum of patients with congestive heart failure. Am Heart J 51:533–541. https://doi.org/10.1016/0002-8703(56)90099-0 Anand IS, Latini R, Florea VG, Kuskowski MA, Rector T et al (2005) C-reactive protein in heart failure: prognostic value and the effect of valsartan. Circulation. 112:1428–1434 Koller L, Kleber M, Goliasch G, Sulzgruber P, Scharnag H et al (2014) C-reactive protein predicts mortality in patients referred for coronary angiography and symptoms of heart failure with preserved ejection fraction. Eur J Heart Fail 16:758–766. https://doi.org/10.1002/ejhf.104 Tennent GA, Hutchinson WL, Kahan MC, Hirschfield GM, Gallimore JR et al (2008) Transgenic human CRP is not pro-atherogenic, pro-atherothrombotic or pro-inflammatory in apoE−/−mice. Atherosclerosis. 196:248–255 Koike T, Kitajima S, Yu Y, Nishijima K, Zhang J et al (2009) Human C-reactive protein does not promote atherosclerosis in transgenic rabbits. Circulation. 120:2088–2094 DuBrock HM, AbouEzzeddine OF, Redfield MM (2018) High-sensitivity C-reactive protein in heart failure with preserved ejection fraction. PLoS ONE 13(8):e0201836. https://doi.org/10.1371/journal.pone.0201836 Maaten JM, Damman K, Verhaar MC, Paulus WJ, Duncker DJ et al (2016) Connecting heart failure with preserved ejection fraction and renal dysfunction: the role of endothelial dysfunction and inflammation. Eur J Heart Fail 18:588–598. https://doi.org/10.1002/ejhf.497 Glezeva N, Baugh JA (2014) Role of inflammation in the pathogenesis of heart failure with preserved ejection fraction and its potential as a therapeutic target. Heart Fail Rev 19:681–694 Zhang Y, Bauersachs J, Langer HF (2017) Immune mechanisms in heart failure. Eur J Heart Fail 19:1379–1389. https://doi.org/10.1002/ejhf.942 Barisione C, Garibaldi S, Ghigliotti G, Fabbi P, Altieri P et al (2010) CD14CD16 monocyte subset levels in heart failure patients. Dis Markers 28:115–124 De RS, Grillo P, Pacileo M, Petritto G, D’Ascoti GL et al (2011) Neopterin: from forgotten biomarker to leading actor in cardiovascular pathophysiology. Curr Vasc Pharmacol 9:188–199 Hartupee J, Mann DL (2013) Positioning of inflammatory biomarkers in the heart failure landscape. J Cardiovasc Transl Res 6:485–492 Monden Y, Kubota T, Inoue T, Tsutsumi T, Kawano S et al (2007) Tumor necrosis factor-alpha is toxic via receptor 1 and protective via receptor 2 in a murine model of myocardial infarction. Am J Physiol Heart Circ Physiol 293:H743–H753 Hamid T, Gu Y, Ortines RV, Bhattacharya C, Wang G et al (2009) Divergent tumor necrosis factor receptor-related remodeling responses in heart failure: role of nuclear factor-kappaB and inflammatory activation. Circulation. 119:1386–1397 Putko BN, Wang Z, Lo J, Anderson T, Becher H et al (2014) Circulating levels of tumor necrosis factor-alpha receptor 2 are increased in heart failure with preserved ejection fraction relative to heart failure with reduced ejection fraction: evidence for a divergence in pathophysiology. PLoS ONE 9(6):e99495. https://doi.org/10.1371/journal.pone.0099495 Naude PJW, Mommersteeg PMC, Gouweleeuw L, Eisel ULM, Denollet J et al (2015) NGAL and other markers of inflammation as competitive or complementary markers for depressive symptom dimensions in heart failure. World J Biol Psychia 16:536–545 Hofmann U, Beyersdorf N, Weirather J, Podolskaya A, Bauersachs J et al (2012) Activation of CD4+ T lymphocytes improves wound healing and survival after experimental myocardial infarction in mice. Circulation. 125:1652–1663 Weinberg EO, Shimpo M, Hurwitz S, Tominaga S, Rouleau JL et al (2003) Identification of serum soluble ST2 receptor as a novel heart failure biomarker. Circulation. 107:721–726 de Boer RA, Lok DJ, Jaarsma T, van der Meer P, Voors AA et al (2011) Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Ann Med 43:60–68 Nymo SH, Hulthe J, Ueland T, McMurray J, Wikstrand J et al (2014) Inflammatory cytokines in chronic heart failure: interleukin-8 is associated with adverse outcome. Results from CORONA. Eur J Heart Fail 16:68–75. https://doi.org/10.1093/eurjhf/hft125 Damås JK, Eiken HG, Øie E, Bjerkeli V, Yndestad A et al (2000) Myocardial expression of CC- and CXC-chemokines and their receptors in human end-stage heart failure. Cardiovasc Res 47:778–787 De Gennaro L, Brunetti ND, Montrone D, De Rosa F, Cuculo A et al (2012) Subacute inflammatory activation in subjects with acute coronary syndrome and left ventricular dysfunction. Inflammation. 35:363–370 Chan MMY, Santhanakrishnan R, Chong JPC, Chen Z, Tai BC et al (2016) Growth differentiation factor 15 in heart failure with preserved vs. reduced ejection fraction. Eur J Heart Fail 18:81–88. https://doi.org/10.1002/ejhf.431 Kayama Y, Minamino T, Toko H, Sakamoto M, Shimizu I et al (2009) Cardiac 12/15 lipoxygenase–induced inflammation is involved in heart failure. J Exp Med 206(7):1565–1574 www.jem.org/cgi/doi/10.1084/jem.20082596 Liu L, Wang Y, Cao Z-Y, Wang M-M, Liu X-Y et al (2015) Up-regulated TLR4 in cardiomyocytes exacerbates heart failure after long-term myocardial infarction. J Cell Mol Med 19(12):2728–2740 Coggins M, Rosenzweig A (2012) The fire within: cardiac inflammatory signaling in health and disease. Circ Res 110:116–125 Mann DL (2011) The emerging role of innate immunity in the heart and vascular system: for whom the cell tolls. Circ Res 108:1133–1145 Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373–384 Yang Y, Lv J, Jiang S, Ma Z, Wang D et al (2016) The emerging role of Toll-like receptor 4 in myocardial inflammation. Cell Death Dis 7:e2234. https://doi.org/10.1038/cddis.2016.140 Lovett DH, Mahimkar R, Raffai RL, Cape L, Zhu B et al (2013) N-terminal truncated intracellular matrix metalloproteinase-2 induces cardiomyocyte hypertrophy, inflammation and systolic heart failure. PLoS ONE 8(7):e68154. https://doi.org/10.1371/journal.pone.0068154 Gordon JW, Shaw JA, Kirschenbaum LA (2011) Multiple facets of NF-κB in the heart. To be or not to NF-κB. Circ Res 108:1122–1132 Supta S, Young D, Maitra RK, Gupta A, Popovic ZB et al (2008) Prevention of cardiac hypertrophy and heart failure by silencing of NFkappaB. J Mol Biol 375:637–649 Arslan F, de Kleign DP, Pasterkamp G (2011) Innate immune signaling in cardiac ischemia. Nat Rev Cardiol 8:292–300 Valen G (2011) Innate immunity and remodeling. Heart Fail Rev 16:71–78 Fallach R, Shainberg A, Avlas O, Fainblut M, Chepurko Y et al (2010) Cardiomyocyte Toll-like receptor 4 is involved in heart dysfunction following septic shock or myocardial ischemia. J Mol Cell Cardiol 48:1236–1244. https://doi.org/10.1016/j.yjmcc.2010.02.020 Dhondup Y, Sjaastad I, Scott H, Sandanger Ø, Zhang L et al (2015) Sustained Toll-like receptor 9 activation promotes systemic and cardiac inflammation, and aggravates diastolic heart failure in SERCA2a KO mice. PLoS ONE 10(10):e0139715. https://doi.org/10.1371/journal.pone.0139715 Willner N, Goldberg Y, Schiff E, Vadasz Z (2018) Semaphorin 4D levels in heart failure patients: a potential novel biomarker of acute heart failure? ESC Heart Fail 5:603–609. https://doi.org/10.1002/ehf2.12275 Lu Q, Dong N, Wang Q, Yi W, Wang Y et al (2013) Increased levels of plasma soluble Sema4D in patients with heart failure. PLoS One 8:e64265 Moses HL, Roberts AB, Derynck R (2016) The discovery and early days of TGF-β: a historical perspective. Cold Spring Harb Perspect Biol 8:a021865 Travis MA, Sheppard D (2014) TGF-β activation and function in immunity. Annu Rev Immunol 32:51–82 Kim YJ, Carvalho FC, Souza JA, Gonçalves PC, Nogueira AV et al (2013) Topical application of the lectin Artin M accelerates wound healing in rat oral mucosa by enhancing TGF-β and VEGF production. Wound Repair Regen 21:456–463 Sugiyama D, Kulkeaw K, Mizuochi C (2013) TGF-beta-1 up-regulates extra-cellular matrix production in mouse hepatoblasts. Mech Dev 130:195–206 Zhou P, Shi L, Li Q, Lu D (2015) Overexpression of RACK1 inhibits collagen synthesis in keloid fibroblasts via inhibition of transforming growth factor-β1/Smad signaling pathway. Int J Clin Exp Med 8:15262–15268 Zhao M, Zheng S, Yang J, Wu Y, Ren Y et al (2015) Suppression of TGF-β1/Smad signaling pathway by sesamin contributes to the attenuation of myocardial fibrosis in spontaneously hypertensive rats. PLoS One 10:e0121312 Yan L, Wei X, Tang QZ, Feng J, Zhang Y et al (2011) Cardiac-specific mindin overexpression attenuates cardiac hypertrophy via blocking AKT/GSK3β and TGF-β1-Smad signalling. Cardiovasc Res 92:85–94 Chen K, Chen W, Liu SL, Wu TS, Yu KF et al (2018) Epigallocatechingallate attenuates myocardial injury in a mouse model of heart failure through TGF-β1/Smad3 signaling pathway. Mol Med Rep 17:7652–7660. https://doi.org/10.3892/mmr.2018.8825 Gadkari PV, Balaraman M (2015) Catechins: sources, extractions and encapsulation: a review. Food Bioprod Process 93:122–138 Oyama JI, Shiraki A, Nishikido T, Maeda T, Komoda H et al (2017) EGCG, a green tea catechin, attenuates the progression of heart failure induced by the heart/muscle-specific deletion of MnSOD in mice. J Cardiol 69:417–427 Hao J, Kim CH, Ha TS, Ahn HY (2007) Epigallocatechin-3 gallate prevents cardiac hypertrophy induced by pressure overload in rats. J Vet Sci 8:121–129 Sriram N, Kalayarasan S, Manikandan R, Arumugam M, Sudhandiran G (2015) Epigallocatechin gallate attenuates fibroblast proliferation and excessive collagen production by effectively intervening TGF-β1 signalling. Clin Exp Pharmacol Physiol 42:849–859 Kumar Singh N (2017) microRNAs databases: developmental methodologies, structural and functional annotations. Interdiscip Sci Comput Life Sci 9:357–377 Romaine SPR, Tomaszewski M, Condorelli G, Samani NJ (2015) MicroRNAs in cardiovascular disease: an introduction for clinicians. Heart. 101:921–928 Ban YH, Oh S-C, Seo S-H, Kim S-M, Choi I-P (2017) miR-150-Mediated Foxo1 regulation programs CD8+ T cell differentiation. Cell Rep 20:2598–2611 Chen Z, Stelekati E, Kurachi M, Yu S, Cai Z et al (2017) MiR-150 regulates memory CD8 T cell differentiation via c-Myb. Cell Rep 20(11):2584–2597 Sang W, Sun C, Zhang C, Zhang D, Wang Y et al (2016) MicroRNA-150 negatively regulates the function of CD4+ T cells through AKT3/Bim signaling pathway. Cell Immunol 306:35–40 King BC, Esguerra JLS, Golec E, Eliasson L, Kemper C (2016) CD46 activation regulates miR-150-mediated control of GLUT1 expression and cytokine secretion in human CD4+ T cells. Immunol. 196(4):1636–1645 Desjarlais M, Dussault S, Dhahri W, Mathieu R, Rivard A (2017) MicroRNA-150 modulates ischemia-induced neovascularization in atherosclerotic conditions. Arterioscler Thromb Vasc Biol 37:900–908 Rajput C, Tauseef M, Farazuddin M, Yazbeck P, Amin M-R et al (2016) MicroRNA-150 suppression of angiopoetin-2 generation and signaling is crucial for resolving vascular injury. Arterioscler Thromb Vasc Biol 36(2):380–388 Wang X, Song C, Zhou X, Han X, Li J et al (2017) Mitochondria associated microRNA expression profiling of heart failure. Biomed Res Int. https://doi.org/10.1155/2017/4042509 Zhu X-H, Yuan Y-X, Rao S-L, Wang P (2016) LncRNA MIAT enhances cardiac hypertrophy partly through sponging miR-150. Eur Rev Med Pharmacol Sci 20:3653–3660 Widlansky ME, Jensen DM, Wang J, Liu Y, Geurts AM et al (2018) miR-29 contributes to normal endothelial function and can restore it in cardiometabolic disorders. EMBO Mol Med. https://doi.org/10.15252/emmm.201708046 Lu Z, Wang F, Yu P, Wang X, Wang Y et al (2018) Inhibition of miR-29b suppresses MAPK signaling pathway through targeting SPRY1 in atherosclerosis. Vasc Pharmacol. https://doi.org/10.1016/j.vph.2018.01.006 Huang Y-G, Li J, Chen J-Y, Zhou Y-L, Cai A-P et al (2017) The association of circulating MiR-29b and interleukin-6 with subclinical atherosclerosis. Cell Physiol Biochem 44:1537–1544 Zhang H, Chen J, Shen Z, Gu J, Xu L et al (2018) Indoxyl sulfate accelerates vascular smooth muscle cell calcification via microRNA-29b dependent regulation of Wnt/β-catenin signaling. Toxicol Lett 284:29–36 Wu L, Wang Q, Guol F, Ma X, Ji H et al (2016) MicroRNA-27a induces mesangial cell injury by targeting of PPARγ, and its in vivo knockdown prevents progression of diabetic nephropathy. Sci Rep. https://doi.org/10.1038/srep26072 Shi D-L, Shi G-R, Xie J, Du X-Z, Yang H (2016) MicroRNA-27a inhibits cell migration and invasion of fibroblast-like synoviocytes by targeting follistatin-like protein 1 in rheumatoid arthritis. Mol Cell 39(8):611–618 Yao F, Yu Y, Feng L, Li J, Zhang M et al (2017) Adipogenic miR-27a in adipose tissue upregulates macrophage activation via inhibiting PPARγ of insulin resistance induced by high-fat diet associated obesity. Exp Cell Res 355:105–112 Xie X, Li S, Zhu Y, Liu L, Pan Y et al (2017) MicroRNA-27a/b mediates endothelin-1-induced PPARγ reduction and proliferation of pulmonary artery smooth muscle cells. Cell Tissue Res 369:527–539 Garikipati VNS, Krishnamurthy P, Verma SK, Khan M, Abramova T et al (2015) Negative regulation of miR-375 by interleukin-10 enhances bone marrow derived progenitor cell-mediated myocardial repair and function after myocardial infarction. Stem Cells 33(12):3519–3529 Boštjančiča E, Brandner T, Zidar N, Glavač D, Štajer D (2018) Down-regulation of miR-133a/b in patients with myocardial infarction correlates with the presence of ventricular fibrillation. Biomed Pharmacother 99:65–71 Condorelli G, Latronico MV, Dorn GW (2010) MicroRNAs in heart disease: putative novel therapeutic targets? Eur Heart J 31:649–658 Bayoumi AS, Teoh JP, Aonuma T, Yuan Z, Ruan X et al (2017) MicroRNA-532 protects the heart in acute myocardial infarction, and represses prss23, a positive regulator of endothelial-to-mesenchymal transition. Cardiovasc Res. https://doi.org/10.1093/cvr/cvx132 Zhang M, Cheng Y-J, Sara J, Liu L-J, Liu L-P et al (2017) Circulating microRNA-145 is associated with acute myocardial infarction and heart failure. Chin Med J 130:51–56 Latet SC, Van Herck PL, Claeys MJ, Van Craenenbroeck AH, Heine SE et al (2017) Failed downregulation of circulating microRNA-155 in the early phase after ST elevation myocardial infarction I associated with adverse left ventricular remodelling. Cardiology. 138(2):91–96 Devaux Y, Vausort M, McCann GP, Kelly D, Collignon O et al (2013) A panel of 4 microRNAs facilitates the prediction of left ventricular contractility after acute myocardial infarction. PLoS ONE 8(8). https://doi.org/10.1371/journal.pone.0070644 Devaux Y, Vausort M, McCann GP, Zangrando J, Kelly D et al (2013) MicroRNA-150: a novel marker of left ventricular remodelling after acute myocardial infarction. Circ Cardiovasc Genet 6:290–298 Wang J, Huang W, Xu R, NieY CX et al (2012) MicroRNA-24 regulates cardiac fibrosis after myocardial infarction. J Cell Mol Med 16(9):2150–2160 Beg F, Wang R, Saeed Z, Devaraj S, Masoor K et al (2017) Inflammation-associated microRNA changes in circulating exosomes of heart failure patients. BMC Res Notes 10:751. https://doi.org/10.1186/s13104-017-3090-y Martin B, Gabris-Weber BA, Reddy R, Romero G, Chattopadhyay A et al (2018) Relaxin reverses inflammatory and immune signals in aged hearts. PLoS ONE 13(1):e0190935. https://doi.org/10.1371/journal.pone.0190935 Bellumkonda L, Tyrrell D, Hummel SL, Goldstein DR (2017) Pathophysiology of heart failure and frailty. Aging Cell 16:444–450. https://doi.org/10.1111/acel.12581 Nanchen D, Stott DJ, Gussekloo J, Mooijaart SP, Westendorp RGJ et al (2013) Resting heart rate and incident heart failure and cardiovascular mortality in older adults: role of inflammation and endothelial dysfunction: the PROSPER study. Eur J Heart Fail 15:581–588. https://doi.org/10.1093/eurjhf/hfs195 Rohm I, Kretzschmar D, Pistulli R, Franz M, Schulze PC et al (2016) Impact of ivabradine on inflammatory markers in chronic heart failure. J Immunol Res:6949320: 12 pages. https://doi.org/10.1155/2016/6949320 Mann DL, McMurray JJ, Packer M, Swedberg K, Borer JS et al (2004) Targeted anti-cytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation. 109:1594–1602 Chung ES, Packer M, Lo KH, Fasanmade AA, Willerson JT (2003) Anti-TNF therapy against congestive heart failure investigators. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumour necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation. 107:3133–3140 Parrillo JE, Cunnion RE, Epstein SE, Parker MM, Suffredini AF et al (1989) A prospective randomized controlled trial of prednisone for dilated cardiomyopathy. NEJM. 321:1061–1068 Rogers JK, Jhund PS, Perez AC, Böhm M, Cleland JG et al (2014) Effect of rosuvastatin on repeat heart failure hospitalizations: the CORONA trial (Controlled Rosuvastatin Multinational Trial in Heart Failure). J Am Coll Cardiol Heart Fail 2:289–297 Tavazzi L, Maggioni AP, Marchioli R, Barlera S, Franzosi MG et al (2008) Gissi-HF Investigators. Effect of rosuvastatin in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet. 372:1231–1239 Moreira DM, Vieira JL, Gottschall CA (2009) The effects of METhotrexate therapy on the physical capacity of patients with ISchemic heart failure: a randomized double-blind, placebo controlled trial (METIS trial). J Card Fail 15:828–834 Dorffel WV, Felix SB, Wallukat G, Brehme S, Bestvater K et al (1997) Short-term hemodynamic effects of immunoadsorption in dilated cardiomyopathy. Circulation. 95:1994–1997 Mobini R, Staudt A, Felix SB, Baumann G, Wallukat G et al (2003) Hemodynamic improvement and removal of autoantibodies against beta1-adrenergic receptor by immunoadsorption therapy in dilated cardiomyopathy. J Autoimmun 20:345–350 Felix SB, Staudt A, Landsberger M, Grosse Y, Stangl V et al (2002) Removal of cardiodepressant antibodies in dilated cardiomyopathy by immunoadsorption. J Am Coll Cardiol 39:646–652 Staudt A, Hummel A, Ruppert J, Dorr M, Trimpert C et al (2006) Immunoadsorption in dilated cardiomyopathy: 6-month results from a randomized study. Am Heart J 152(712):e711–e716 Staudt A, Staudt Y, Dorr M, Bohm M, Knebel F et al (2004) Potential role of humoral immunity in cardiac dysfunction of patients suffering from dilated cardiomyopathy. J Am Coll Cardiol 44:829–836 Torre-Amione G, Anker SD, Bourge RC, Colucci WS, Greenberg BH et al (2008) Results of a nonspecific immunomodulation therapy in chronic heart failure (ACCLAIM trial): a placebo-controlled randomised trial. Lancet. 371:228–236 Salio M, Chimenti S, De Angelis N, Molla F, Maina V et al (2008) Cardioprotective function of the long pentraxin PTX3 in acute myocardial infarction. Circulation. 117:1055–1064