Variational principle for weighted porous media equation

Comptes Rendus Mathematique - Tập 352 - Trang 31-34 - 2014
Alexandra Antoniouk1, Marc Arnaudon2
1Department of Nonlinear Analysis, Institute of Mathematics NAS Ukraine, Tereschchenkivska str. 3, Kyiv 01 601, Ukraine
2Institut de mathématiques de Bordeaux, CNRS UMR 5251, Université Bordeaux-1, 33405 Talence cedex, France

Tài liệu tham khảo

Arnaudon, 2012, Lagrangian Navier–Stokes diffusions on manifolds: variational principle and stability, Bull. Sci. Math., 136, 857, 10.1016/j.bulsci.2012.06.007 Arnold, 1966, Sur la géométrie diffŕentielle des groupes de Lie de dimension infinie et ses applications à lʼhydrodynamique des fuides parfaits, Ann. Inst. Fourier, 16, 316, 10.5802/aif.233 Cipriano, 2007, Navier–Stokes equation and diffusions on the group of homeomorphisms of the torus, Commun. Math. Phys., 275, 255, 10.1007/s00220-007-0306-3 Constantin, 2008, A stochastic Lagrangian representation of the three-dimensional incompressible Navier–Stokes equations, Commun. Pure Appl. Math., 61, 330, 10.1002/cpa.20192 Dolbeault, 2008, Lq-Functional inequalities and weighted porous media equations, Potential Anal., 28, 35, 10.1007/s11118-007-9066-0 Dolbeault, 2008, On the Bakry–Emery criterion for linear diffusions and weighted porous media equations, Commun. Math. Sci., 6, 477, 10.4310/CMS.2008.v6.n2.a10 Ebin, 1970, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. Math., 92, 102, 10.2307/1970699 Eyink, 2010, Stochastic least action principle for the incompressible Navier–Stokes equations, Physica D, 239, 1236, 10.1016/j.physd.2008.11.011