Variational principle for weighted porous media equation
Tài liệu tham khảo
Arnaudon, 2012, Lagrangian Navier–Stokes diffusions on manifolds: variational principle and stability, Bull. Sci. Math., 136, 857, 10.1016/j.bulsci.2012.06.007
Arnold, 1966, Sur la géométrie diffŕentielle des groupes de Lie de dimension infinie et ses applications à lʼhydrodynamique des fuides parfaits, Ann. Inst. Fourier, 16, 316, 10.5802/aif.233
Cipriano, 2007, Navier–Stokes equation and diffusions on the group of homeomorphisms of the torus, Commun. Math. Phys., 275, 255, 10.1007/s00220-007-0306-3
Constantin, 2008, A stochastic Lagrangian representation of the three-dimensional incompressible Navier–Stokes equations, Commun. Pure Appl. Math., 61, 330, 10.1002/cpa.20192
Dolbeault, 2008, Lq-Functional inequalities and weighted porous media equations, Potential Anal., 28, 35, 10.1007/s11118-007-9066-0
Dolbeault, 2008, On the Bakry–Emery criterion for linear diffusions and weighted porous media equations, Commun. Math. Sci., 6, 477, 10.4310/CMS.2008.v6.n2.a10
Ebin, 1970, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. Math., 92, 102, 10.2307/1970699
Eyink, 2010, Stochastic least action principle for the incompressible Navier–Stokes equations, Physica D, 239, 1236, 10.1016/j.physd.2008.11.011