Variational differential quadrature: A technique to simplify numerical analysis of structures

Applied Mathematical Modelling - Tập 49 - Trang 705-738 - 2017
M. Faghih Shojaei1,2, R. Ansari1,3
1Department of Mechanical Engineering, University of Guilan, P.O. Box 3756, Rasht, Iran
2School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
3Universal Scientific Education and Research Network (USERN), Rasht, Iran

Tài liệu tham khảo

Dawson, 1998, A two-grid finite difference scheme for nonlinear parabolic equations, SIAM J. Numer. Anal., 35, 435, 10.1137/S0036142995293493 Lobo, 2002, On comparing finite difference schemes applied to a nonlinear multi-region heat and mass transfer problem, Comput. Mech., 28, 55, 10.1007/s00466-001-0269-8 Chu, 2008, Hybrid differential transform and finite difference method to solve the nonlinear heat conduction problem, Commun. Nonlinear Sci. Numer. Simulat, 13, 1605, 10.1016/j.cnsns.2007.03.002 Jangveladze, 2009, Large time behavior of solutions and finite difference scheme to a nonlinear integro-differential equation, Comput. Math. Appl., 57, 799, 10.1016/j.camwa.2008.09.055 Bellman, 1971, Differential quadrature and long-term integration, J. Math. Anal. Appl., 34, 235, 10.1016/0022-247X(71)90110-7 Bellman, 1972, Differential quadrature: a technique for rapid solution of nonlinear partial differential equations, J. Comput. Phys., 10, 40, 10.1016/0021-9991(72)90089-7 Striz, 1995, Harmonic differential quadrature method and applications to analysis of structural components, Acta Mech., 111, 85, 10.1007/BF01187729 Bert, 1996, Differential quadrature method in computational mechanics: a review, ASME Appl. Mech. Rev., 49, 1, 10.1115/1.3101882 Chen, 1997, The study on the nonlinear computations of the DQ and DC methods, Numer. Method Part. Differ. Eq., 13, 57, 10.1002/(SICI)1098-2426(199701)13:1<57::AID-NUM5>3.0.CO;2-L Malekzadeh, 2007, A differential quadrature nonlinear free vibration analysis of laminated composite skew thin plates, Thin-Walled Struct., 45, 237, 10.1016/j.tws.2007.01.011 Korkmaz, 2008, A differential quadrature algorithm for simulations of nonlinear schrödinger equation, Comput. Math. Appl., 56, 2222, 10.1016/j.camwa.2008.03.047 Yücel, 2009, Differential quadrature method (DQM) for a class of singular two-point boundary value problems, Int. J. Comput. Math., 86, 465, 10.1080/00207160701600168 Shu, 1991 Shu, 1992, Application of generalized differential quadrature to solve two-dimensional incompressible Navier-Stokes equations, Int. J. Numer. Methods Fluids, 15, 791, 10.1002/fld.1650150704 Shu, 2000 Du, 1994, Application of generalized differential quadrature method to structural problems, Int. J. Numer. Method Eng., 37, 1881, 10.1002/nme.1620371107 Mokhtari, 2011, Numerical simulation of coupled nonlinear schrödinger equations using the generalized differential quadrature method, Chin. Phys. Lett., 28 Vendhan, 1975, Application of Rayleigh-Ritz and Galerkin methods to non-linear vibration of plates, J. Sound Vibr., 39, 147, 10.1016/S0022-460X(75)80214-8 Omodei, 1975, Stability of the Rayleigh-Ritz Procedure for nonlinear two-point boundary value problems, Numer. Math., 24, 27, 10.1007/BF01437215 Greenlee, 2010, Quadratic interpolation and Rayleigh–Ritz methods for bifurcation coefficients, SIAM J. Math. Anal., 42, 2987, 10.1137/090750445 Mazhari, 2011, Analysis of postbuckling behavior of circular plates with non-concentric hole using the Rayleigh–Ritz method, Appl. Math. Model., 35, 3136, 10.1016/j.apm.2010.12.016 Marion, 1989, Nonlinear Galerkin methods, SIAM J. Numer. Anal., 26, 1139, 10.1137/0726063 El-Gamel, 2004, Sinc-Galerkin method for solving nonlinear boundary-value problems, Comput. Math. Appl., 48, 1285, 10.1016/j.camwa.2004.10.021 Ohm, 2006, Error estimates for discontinuous Galerkin method for nonlinear parabolic equations, J. Math. Anal. Appl, 315, 132, 10.1016/j.jmaa.2005.07.027 Zhang, 2012, Galerkin method for steady-state response of nonlinear forced vibration of axially moving beams at supercritical speeds, J. Sound Vibr., 331, 1612, 10.1016/j.jsv.2011.12.004 Atluri, 1998, A New meshless local Petrov–Galerkin (MLPG) approach in computational mechanics, Comput. Mech., 22, 117, 10.1007/s004660050346 Atluri, 2004 Reddy, 1993 Shu, 1998, On the equivalence of generalized differential quadrature and highest order finite difference scheme, Comput. Methods Appl. Mech. Eng, 155, 249, 10.1016/S0045-7825(97)00150-3 Civan, 1978 Raju, 2015, Optimal postbuckling design of variable angle tow composites using lamination parameters White, 2016, Towards imperfection insensitive buckling response of shell structures-shells with plate-like post-buckled responses, Aeronaut. J., 120, 233, 10.1017/aer.2015.14 White, 2014, Initial post-buckling of variable-stiffness curved panels, J. Mech. Phys. Solids, 71, 132, 10.1016/j.jmps.2014.07.003 Ansari, 2015, A novel variational numerical method for analyzing the free vibration of composite conical shells, Appl. Math. Model, 39, 2849, 10.1016/j.apm.2014.11.012 Fung, 2003, Imposition of boundary conditions by modifying the weighting coefficient matrices in the differential quadrature method, Int. J. Numer. Method Eng, 56, 405, 10.1002/nme.571 Liu, 2001, Differential quadrature element method for buckling analysis of rectangular Mindlin plates having discontinuities, Int. J. Solids Struct., 38, 2305, 10.1016/S0020-7683(00)00120-7 Liew, 2004, Analysis of general shaped thin plates by the moving least-squares differential quadrature method, Finite Elem. Anal. Des., 40, 1453, 10.1016/j.finel.2003.10.002