Variational approach to impulsive differential equations

Nonlinear Analysis: Real World Applications - Tập 10 Số 2 - Trang 680-690 - 2009
Juan J. Nieto1, Donal O’Regan2
1Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Santiago de Compostela, Santiago de Compostela, 15782, Spain
2Department of Mathematics National University of Ireland Galway, Ireland#TAB#

Tóm tắt

Từ khóa


Tài liệu tham khảo

Agarwal, 2005, Singular boundary value problems for first and second order impulsive differential equations, Aequationes Math., 69, 83, 10.1007/s00010-004-2735-9

Brezis, 1983

Carter, 1991, Optimal impulsive space trajectories based on linear equations, J. Optim. Theory Appl., 70, 277, 10.1007/BF00940627

Carter, 2000, Necessary and sufficient conditions for optimal impulsive rendezvous with linear equations of motion, Dynam. Control, 10, 219, 10.1023/A:1008376427023

Chang, 2002, Dynamics of multibody systems subjected to impulsive constraints, Multibody Syst. Dyn., 8, 161, 10.1023/A:1019537611060

Chipot, 2000

d’Onofrio, 2005, On pulse vaccination strategy in the SIR epidemic model with vertical transmission, Appl. Math. Lett., 18, 10.1016/j.aml.2004.05.012

Gao, 2006, Analysis of a delayed epidemic model with pulse vaccination and saturation incidence, Vaccine, 24, 6037, 10.1016/j.vaccine.2006.05.018

Gao, 2007, Analysis of an SIR epidemic model with pulse vaccination and distributed time delay, J. Biomed. Biotech., 10.1155/2007/64870

Li, 2005, Global attractivity of positive periodic solutions for an impulsive delay periodic model of respiratory dynamics, J. Comput. Appl. Math., 174, 227, 10.1016/j.cam.2004.04.010

Li, 2005, Impulsive stabilization and synchronization of a class of chaotic delay systems, Chaos, 15, 043103, 10.1063/1.2102107

Li, 2007, Impulsive periodic boundary value problems of first-order differential equations, J. Math. Anal. Appl., 325, 226, 10.1016/j.jmaa.2005.04.005

Lin, 2006, Multiple solutions of Dirichlet boundary value problems for second order impulsive differential equations, J. Math. Anal. Appl., 321, 501, 10.1016/j.jmaa.2005.07.076

Liu, 1996, Impulsive controllability of linear dynamical systems with applications to maneuvers of Spacecraft, Math. Probl. Eng., 2, 277, 10.1155/S1024123X9600035X

Mawhin, 1989

Nieto, 1997, Generalized quasilinearization method for a second order ordinary differential equation with Dirichlet boundary conditions, Proc. Amer. Math. Soc., 125, 2599, 10.1090/S0002-9939-97-03976-2

Nieto, 1997, Basic theory for nonresonance impulsive periodic problems of first order, Proc. Amer. Math. Soc., 125, 2599, 10.1090/S0002-9939-97-03976-2

Nieto, 2007, New comparison results for impulsive integro-differential equations and applications, J. Math. Anal. Appl., 328, 1343, 10.1016/j.jmaa.2006.06.029

Pasquero, 2006, On the simultaneous presence of unilateral and kinetic constraints in time-dependent impulsive mechanics, J. Math. Phys., 47, 082903, 10.1063/1.2234728

Pasquero, 2005, Ideality criterion for unilateral constraints in time-dependent impulsive mechanics, J. Math. Phys., 46, 112904, 10.1063/1.2121247

Prado, 2005, Bi-impulsive control to build a satellite constellation, Nonlinear Dyn. Syst. Theory, 5, 169

Samoilenko, 1995

J.H. Shen, J.L. Li, Existence and global attractivity of positive periodic solutions for impulsive predator-prey model with dispersion and time delays, Nonlinear Anal. Real World Appl., in press (doi:110.1016/j.nonrwa.2007.08.026)

Tang, 2002, Density-dependent birth rate, birth pulses and their population dynamic consequences, J. Math. Biol., 44, 185, 10.1007/s002850100121

Y. Tian, W. Ge, Applications of variational methods to boundary value problem for impulsive differential equations, Proc. Edinb. Math. Soc., preprint

Yan, 2004, Existence and global attractivity of positive periodic solution of periodic single-species impulsive Lotka–Volterra systems, Math. Comput. Modelling, 40, 509, 10.1016/j.mcm.2003.12.011

Zeidler, 1985

Zhang, 2004, Periodicity in a generalized ecological competition system governed by impulsive differential equations with delays, Math. Comput. Modelling, 39, 479, 10.1016/S0895-7177(04)90519-5

H. Zhang, L.S. Chen, J.J. Nieto, A delayed epidemic model with stage-structure and pulses for management strategy, Nonlinear Anal. Real World Appl., in press (doi:10.1016/j.nonrwa.2007.05.004)

Zhang, 2003, Optimal impulsive harvesting policy for single population, Nonlinear Anal. Real World Appl., 4, 639, 10.1016/S1468-1218(02)00084-6