Variational approach to impulsive differential equations
Tóm tắt
Từ khóa
Tài liệu tham khảo
Agarwal, 2005, Singular boundary value problems for first and second order impulsive differential equations, Aequationes Math., 69, 83, 10.1007/s00010-004-2735-9
Brezis, 1983
Carter, 1991, Optimal impulsive space trajectories based on linear equations, J. Optim. Theory Appl., 70, 277, 10.1007/BF00940627
Carter, 2000, Necessary and sufficient conditions for optimal impulsive rendezvous with linear equations of motion, Dynam. Control, 10, 219, 10.1023/A:1008376427023
Chang, 2002, Dynamics of multibody systems subjected to impulsive constraints, Multibody Syst. Dyn., 8, 161, 10.1023/A:1019537611060
Chipot, 2000
d’Onofrio, 2005, On pulse vaccination strategy in the SIR epidemic model with vertical transmission, Appl. Math. Lett., 18, 10.1016/j.aml.2004.05.012
Gao, 2006, Analysis of a delayed epidemic model with pulse vaccination and saturation incidence, Vaccine, 24, 6037, 10.1016/j.vaccine.2006.05.018
Gao, 2007, Analysis of an SIR epidemic model with pulse vaccination and distributed time delay, J. Biomed. Biotech., 10.1155/2007/64870
Li, 2005, Global attractivity of positive periodic solutions for an impulsive delay periodic model of respiratory dynamics, J. Comput. Appl. Math., 174, 227, 10.1016/j.cam.2004.04.010
Li, 2005, Impulsive stabilization and synchronization of a class of chaotic delay systems, Chaos, 15, 043103, 10.1063/1.2102107
Li, 2007, Impulsive periodic boundary value problems of first-order differential equations, J. Math. Anal. Appl., 325, 226, 10.1016/j.jmaa.2005.04.005
Lin, 2006, Multiple solutions of Dirichlet boundary value problems for second order impulsive differential equations, J. Math. Anal. Appl., 321, 501, 10.1016/j.jmaa.2005.07.076
Liu, 1996, Impulsive controllability of linear dynamical systems with applications to maneuvers of Spacecraft, Math. Probl. Eng., 2, 277, 10.1155/S1024123X9600035X
Mawhin, 1989
Nieto, 1997, Generalized quasilinearization method for a second order ordinary differential equation with Dirichlet boundary conditions, Proc. Amer. Math. Soc., 125, 2599, 10.1090/S0002-9939-97-03976-2
Nieto, 1997, Basic theory for nonresonance impulsive periodic problems of first order, Proc. Amer. Math. Soc., 125, 2599, 10.1090/S0002-9939-97-03976-2
Nieto, 2007, New comparison results for impulsive integro-differential equations and applications, J. Math. Anal. Appl., 328, 1343, 10.1016/j.jmaa.2006.06.029
Pasquero, 2006, On the simultaneous presence of unilateral and kinetic constraints in time-dependent impulsive mechanics, J. Math. Phys., 47, 082903, 10.1063/1.2234728
Pasquero, 2005, Ideality criterion for unilateral constraints in time-dependent impulsive mechanics, J. Math. Phys., 46, 112904, 10.1063/1.2121247
Prado, 2005, Bi-impulsive control to build a satellite constellation, Nonlinear Dyn. Syst. Theory, 5, 169
Samoilenko, 1995
J.H. Shen, J.L. Li, Existence and global attractivity of positive periodic solutions for impulsive predator-prey model with dispersion and time delays, Nonlinear Anal. Real World Appl., in press (doi:110.1016/j.nonrwa.2007.08.026)
Tang, 2002, Density-dependent birth rate, birth pulses and their population dynamic consequences, J. Math. Biol., 44, 185, 10.1007/s002850100121
Y. Tian, W. Ge, Applications of variational methods to boundary value problem for impulsive differential equations, Proc. Edinb. Math. Soc., preprint
Yan, 2004, Existence and global attractivity of positive periodic solution of periodic single-species impulsive Lotka–Volterra systems, Math. Comput. Modelling, 40, 509, 10.1016/j.mcm.2003.12.011
Zeidler, 1985
Zhang, 2004, Periodicity in a generalized ecological competition system governed by impulsive differential equations with delays, Math. Comput. Modelling, 39, 479, 10.1016/S0895-7177(04)90519-5
H. Zhang, L.S. Chen, J.J. Nieto, A delayed epidemic model with stage-structure and pulses for management strategy, Nonlinear Anal. Real World Appl., in press (doi:10.1016/j.nonrwa.2007.05.004)