Variation type characterization of product Hardy spaces

Laura Angeloni1, Elijah Liflyand2, Gianluca Vinti1
1Dipartimento di Matematica e Informatica, Universita’ degli Studi di Perugia, Perugia, Italy
2Department of Mathematics, Bar Ilan University, Ramat Gan, Israel

Tóm tắt

In the multidimensional Euclidean space, except the classical real Hardy space, there are numerous product ones. We associate with each of them a class of functions related to the known variations and new ones. Such a characterization is fulfilled by means of the integrability of the Fourier transform

Từ khóa


Tài liệu tham khảo

Angeloni, L., Liflyand, E., Vinti, G.: Real Hardy space, multidimensional variations, and integrability of the Fourier transform. Complex Anal. Oper. Theory 14(6), 10 (2020)

Angeloni, L., Vinti, G.: Convergence and rate of approximation for linear integral operators in \(BV^{\varphi }-\)spaces in multidimensional setting. J. Math. Anal. Appl. 349, 317–334 (2009)

Angeloni, L., Vinti, G.: A sufficient condition for the convergence of a certain modulus of smoothness in multidimensional setting. Commun. Appl. Nonlinear Anal. 20(1), 1–20 (2013)

Angeloni, L., Vinti, G.: Convergence in variation and a characterization of the absolute continuity. Integral Transforms Spec. Funct. 26(10), 829–844 (2015)

Berkson, E., Gillespie, T.A.: Absolutely continuous functions of two variables and well-bounded operators. J. Lond. Math. Soc. 2(30), 305–324 (1984)

Chang, S.-Y.A., Fefferman, R.: Some recent developments in Fourier analysis and \(H^p\)-theory on product domains. Bull. Am. Math. Soc. (N.S.) 12, 1–43 (1985)

Fefferman, R.: Some recent developments in Fourier analysis and \(H^{P}\) theory and product domains. II, Function spaces and applications. Proc. US-Swed. Semin., Lund/Swed., Lect. Notes Math. 1302, 44–51 (1988)

Garcia-Cuerva, J., Rubio de Francia, J.L.: Weighted Norm Inequalities and Related Topics. North-Holland (1985)

Giang, D.V., Móricz, F.: Lebesgue integrability of double Fourier transforms. Acta Sci. Math. (Szeged) 58, 299–328 (1993)

Giang, D.V., Móricz, F.: Hardy spaces on the plane and double Fourier transform. J. Fourier Anal. Appl. 2, 487–505 (1996)

Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics. Addison Wesley, Reading (1988)

Liflyand, E.: Multiple Fourier transforms and trigonometric series in line with Hardy’s variation. Contemp. Math. 659, 135–155 (2016)

Liflyand, E.: Functions of Bounded Variation and their Fourier Transforms. Birkhäuser (2019)

Mansour, T., Schork, M.: Commutation Relations, Normal Ordering, and Stirling Numbers. CRC Press, Boca Raton (2015)

Pipher, J., Treil, S.: Weak-star convergence in multiparameter Hardy spaces. Proc. Am. Math. Soc. 139, 1445–1454 (2011)

Radó, T.: Length and Area, American Mathematical Society Colloquium Publications, vol. 30. American Mathematical Society, New York (1948)

Saks, S. : Theory of the integral, Second revised edition. English translation by L. C. Young. With two additional notes by Stefan Banach, Dover Publications, Inc., New York, (1964)

Talalyan, A.A., Gevorkyan, G.G.: Representation of absolutely continuous functions of several variables. Acta Sci. Math. (Szeged) 54, 277–283 (1990)

Tonelli, L.: Su alcuni concetti dell’analisi moderna. Ann. Scuola Norm. Super. Pisa 11(2), 107–118 (1942)

Trigub, R.M., Belinsky, E.S.: Fourier Analysis and Appoximation of Functions. Kluwer (2004)