Variation of microfibril angle and its correlation to wood properties in poplars
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abasolo, W.P., Yoshida, M., Yamamoto, H.,et al. 2000. Microfibril angle determination of rattan fibers and its influence on the properties of the cane [J]. Holzforschung,54(4): 437–442.
Bao, F.C., and Jiang, Z.H. 1998. Wood properties of main tree species from plantation in China [M]. Beijing: China Forestry Publishing House, pp. 452–457. (in Chinese)
Barnett, J.R., and Bonham V.A. 2004. Cellulose microfibril angle in the cell wall of wood fibres [J]. Biol. Rev.,79: 461–472.
Bonham, V.A., and Barnett, J.R. 2001. Fibre length and microfibril angle in silver birch (Betula pendula Roth)[J]. Holzforschung,55: 159–162.
Cave, J.D. 1966. Theory of X-ray measurement of microfibril angle in wood [J]. Journal of Forest Products,16(10): 37–42.
Cave, J.D. 1968. The anisotropic elasticity of the plant cell wall [J]. Wood Science and Technology,2: 268–278.
Cave, J.D., and Walker, J.C.F. 1994. Stiffness of wood in fast-grown plantation softwoods: the influence of microfibril angle [J]. Journal of Forest Products,44(5): 43–48.
Cheng, J. 1985. Wood Science [M]. Beijing: China Forestry Publishing House. (in Chinese)
Dickson, R.L., and Walker, J.C.F. 1997. Pine: growing commodities or designer trees [J]. Commonwealth Forestry Review,76(4): 273–279.
Donaldson, L.A. 1992. Within and between-tree variation in microfibril angle inPinus radiata [J]. New Zealand Journal of Forestry Science,22(1): 77–86.
Donaldson, L.A. 1993. Variation in microfibril angle among three genetic groups ofPinus radiata tree [J]. New Zealand Journal of Forestry Science,23(1): 90–100.
Donaldson, L.A., and Burdon, R.D. 1995. Clonal variation and repeatability of microfibril angle inPinus radiata [J]. New Zealand Journal of Forestry Science,25(2): 164–174.
Evans, R. 1997. Rapid scanning of microfibril angle in increment cores by X-ray diffractometry [C]. The proceedings of IAWA/IUFRO international workshop on the significance of microfibril angle to wood quality, Westport, NZ.
Evans, R., & Ilic, J. 2001. Rapid prediction of wood stiffness from microfibril angle and density [J]. Journal of Forest Products,51: 53–57.
Evans, R., Stringer, S., & Kibblewhite, R.P. 2000. Variation of microfibril angle, density and fibre orientation in twenty-nineEucalyptus nitens trees [J]. Appita Journal,53: 450–457.
Fang, S., and Yang, W. 2003. Interclonal and within-tree variation in wood properties of poplar clones [J]. Journal of Forestry Research,14(4): 263–268.
Fang, S., Xu, X., Lu, S., and Tang, L. 1999. Growth dynamics and biomass production in short-rotation poplar plantations: 6-year results for three clones at four spacings [J]. Biomass & Bioenergy,17: 415–425.
Gambles, R.L and Zsuffa, L. 1984. Conversion and use of poplar and willow biomass for food, forage and energy in North America [C]. International Poplar Commission, October, Room, Fo: MISC/84/15.
Hirakawa, Y. and Fujisawa, Y. 1995. The relationship between microfibril angles of the S2 layer and latewood tracheid lengths on elite sugi tree (Cryptomeria japonica) clones [J]. Mokuzai Gakkaisi,41(2): 123–131.
Klasnja, B., Kopitovic, S., and Orlovic, S. 2003. Variability of some wood properties of eastern cottonwood (Populus deltoides Bartr.) clones [J]. Wood Sci. Technol.,37: 331–337.
Li, H., Huang, M., and Ruan, X. 1997. On variations within trees of microfibril angle inS2 layer of cell secondary wall of cottonwood [J]. Journal of Northwest Forestry College,12(1): 61–65.
Lichtenegger, H., Reiterer, A., Stanzl-Tschegg, S.E., and Fratzl, P. 1999. Variation of cellulose microfibril angles in softwoods and hardwoods — a possible strategy of mechanical optimization [J]. Journal of Structural Biology,128: 257–269.
Manwiller, F.G. 1972. Wood and bark properties of spruce pine [R]. USDA Forest Service Research Paper SO-78.
Monitoring Bureau of National Technology. 1981. National standard GB1932~1942-91: Standard methods for analyzing chemical composition of papermaking raw materials [M]. Beijing: China Standard Press (in Chinese).
Pedini, M. 1992. The variation in the microfibrillar angle within the juvenile wood of sika spruce [J]. IAWA Bulletin,13: 261.
Pillow, M.Y., Terrell, B.Z., and Hiller, C.H. 1953. Patterns of variation in fibril angles in loblolly pine [R]. USDA Forest Service FPL Report No. D 1935.
Saka, S. 1984. The relationship between the microfibril orientation in the tracheid S2 layer and lignin content of coniferous wood [C]. Pacific Regional Wood Anatomy Conference, Tsukuba, Japan, p100-102.
Stuart, S. and Evans, R. 1994. X-ray diffraction estimation of microfibril angle variation in eucalypt wood [J]. Appita,48(3): 197–200.
Walker, J. C. F., & Woollons, R.C. 1998. Cell wall organization and the properties of xylem — a speculative review [C]. In Microfibril Angle in Wood: Proceedings of the IAWA/IUFRO International Workshop on the Significance of Microfibril Angle to Wood Quality (ed. B. G. Butterfield), pp. 13–26. Westport, N.Z. University of Canterbury Press, Canterbury, N.Z..
Walker, J.C.F., and Butterfield, B.G. 1995. The importance of microfibril angle for the processing. Industries [J]. New Zealand Forestry,40(4): 34–40.
Yamashita, K., Hirakawa, Y., Fujisawa, Y., & Nakada, R. 2000. Effects of microfibril angle and density on variation of modulus of elasticity of sugi (Cryptomeria japonica) logs among eighteen cultivars [J]. Mokuzai Gakkaishi,46: 510–522.
Yang, J.L., and Evans, R. 2003. Prediction of MOE of eucalypt wood from microfibril angle and density [J]. Holz als Rohund Werkstoff,61: 449–452.
Yang, W., and Fang, S. 2004. Temporal and spatial variation patterns of microfibril angle for poplar clones [J]. Journal of Northeast Forestry University,32(1): 25–28. (in Chinese with English abstract)