Variation of Sulfur Content in Coking Coal as Function of Its Particle Size

Allerton Press - Tập 54 - Trang 326-336 - 2020
X. G. Mu1, Z. X. Jin1,2, C. B. Deng1,2, F. Gao1,3
1College of Safety Science and Engineering, Liaoning Technical University, Fuxin, China
2School of Safety and Emergency Management Engineering, Taiyuan University of Technology, Taiyuan, China
3Shanxi Coking Coal Group Co., Ltd, Taiyuan, China

Tóm tắt

To understand quality of coking coal possessing different particle sizes, coal samples from Gao Yang (GY) and Shui Yu (SY) mines were systematically studied. The samples had wide particle size variations with six distinct ranges. The main emphasis was placed on analyzing sulfur and coke contents as function of particle sizes. X-ray photoelectron spectroscopy (XPS) was used to analyze sulfur content as well as its chemical state. Sulfur coordination and group geometry was analyzed by Fourier transform infrared spectroscopy (FTIR). Scanning electron microscopy (SEM) was applied to characterize surface morphology. Sieving of the coal samples increased ash and sulfur contents in all fractions. Organic sulfur was mostly present as thiophene for all particle size ranges. Macromolecular structure of coal was almost the same for all samples. Changes in total sulfur content of different coal fractions were mainly caused by the variations in inorganic sulfur concentrations because organic sulfur content remained almost constant. Understanding particle size distribution in different coals is important for selecting and optimizing appropriate desulfurization methods.

Tài liệu tham khảo

Ward, C.R., Int. J. Coal Geol., 2002, vol. 50, no. 1, p.135. https://doi.org/10.1016/S0166-5162(02)00117-9 Chou, C.L., Int. J. Coal Geol., 2012, vol. 100, p. 1. https://doi.org/10.1016/j.coal.2012.05.009 Mathews, J.P. and Chaffee, A.L., Fuel, 2012, vol. 96, p. 1. https://doi.org/10.1016/j.fuel.2011.11.025 Zhong, S.T., Zhao, W., Sheng, C., Xu, W., Zong, Z.M., and Wei, X.Y., Energ. Fuel, 2011, vol. 25, no. 8, p. 3687. https://doi.org/10.1021/ef200844a Ulanovskii, M.L. and Miroshnichenko, D.V., Coke Chem., 2008, vol. 51, no. 2, p. 51. https://doi.org/10.3103/s1068364x08020038 Li, A., Li, P., and Chen, S.M., J. China Coal Soc., 2007, vol. 32, no.6, p. 639. Song, J., Hua, Z., Guo, Z., Amp, X.I., and Co, S., Fuel Chem. Process., 2015, vol. 46, no. 3 p. 7. Spears, D.A. and Booth, C.A., Fuel, 2002, vol. 81, no. 5, p. 683. doihttps://doi.org/10.1016/s0016-2361(01)00156-9 Cloke, M., Lester, E., and Belghazi, A., Fuel, 2002, vol. 81, no. 5, p. 699. https://doi.org/10.1016/S0016-2361(01)00162-4 Zhao, H., Bai, Z., Bai, J., Guo, Z., Kong, L., and Li, W., Fuel, 2015, vol. 148, no.15, p. 145. https://doi.org/10.1016/j.fuel.2015.01.104 Ratanakandilok, S., Ngamprasertsith, S., and Prasassarakich, P., Fuel, 2001, vol. 80, no. 13, p. 1937. https://doi.org/10.1016/S0016-2361(01)00047-3 Mesroghli, S., Yperman, J., Reggers, G., Jorjani, E., and Carleer, R., Fuel, 2016, vol. 183, p. 278. https://doi.org/10.1016/j.fuel.2016.06.037 Chen, P., Zhang, X., and Xue, G., J. Wuhan Eng. Inst., 2015, vol.27, no. 2, p.4. Xu, R., Dai, B., Wei, W., Schenk, J. and Xue, Z., Fuel Process. Technol., 2018, vol. 173, p. 11. https://doi.org/10.1016/j.fuproc.2018.01.006 Ulanovskii, M.L. and Miroshnichenko, D.V., Coke Chem., 2008, vol. 51, no. 2, p. 51. https://doi.org/10.3103/s1068364x08020038 Dmitriev, A.N., Vitkina, G.Y., and Chesnokov, Y.A., Adv. Mater. Res., 2012, vols. 602–604, p. 365. doi 10.4028/www.scientific.net/amr.602-604.365 Cai, Y., Pan, Y., Xue, J., Sun, Q., Su, G., and Xiang, L., Appl. Surf. Sci., 2009, vol. 255, no. 21, p. 8750. https://doi.org/10.1016/j.apsusc.2009.06.028 Gornostayev, S., Rkki, J.H., and Kerkkonen, O., Fuel, 2009, vol. 88, no. 10, p. 2032. https://doi.org/10.1016/j.fuel.2009.02.044 Gu, Y., Yperman, J., Reggers, G., Carleer, R., and Vandewijngaarden, J., Fuel, 2016, vol. 184, no. nov.15, p. 304. https://doi.org/10.1016/j.fuel.2016.06.085 Li, P.S., Hu, Y., Yu, W., Yue, Y.N., Xu, Q., Hu, S., Hu, N.S., and Yang, J., J. Hazard. Mater., 2009, vol. 167, no. 1–3, p. 1126. https://doi.org/10.1016/j.jhazmat.2009.01.115 Nowicki, P., Pietrzak, R. and Wachowska, H., Energ. Fuel, 2010, vol. 24, no. 2, p. 1197. https://doi.org/10.1021/ef900932g Pietrzak, R. and Wachowska, H., Fuel Process. Technol., 2006, vol.87, no. 11, p. 1021. https://doi.org/10.1016/j.fuproc.2006.08.001 Xia, W., Xie, G., and Peng, Y., Fuel, 2016, vol. 164, p. 186. https://doi.org/10.1016/j.fuel.2015.10.009 Zhang, L., Sato, A., and Ninomiya, Y., Fuel, 2002, vol. 81, no. 11, p. 1499. https://doi.org/10.1016/S0016-2361(02)00065-0 Geng, W., Nakajima, T., Takanashi, H., and Ohki, A., Fuel, 2009, vol. 88, no. 1, p. 139. https://doi.org/10.1016/j.fuel.2008.07.027 Mishra, A.K., Chattopadhyay, D.K., Sreedhar, B., and Raju, K.V.S.N., Progr. Org. Coatings, 2006, vol. 55, no. 3, p. 231. https://doi.org/10.1016/j.porgcoat.2005.11.007 Tang, L., Chen, S., Wang, S., Tao, X., He, H., and Fan, H., Energ. Fuels, 2017, vol.31, no.12, p. 13248. https://doi.org/10.1021/acs.energyfuels.7b02112 Feng, L., Zhao, G., Zhao, Y., Zhao, M., and Tang, J., Fuel, 2017, vol.203, p. 924. https://doi.org/10.1016/j.fuel.2017.04.112 Li, J., Du, C., and Bao, J., Int. J. Mining Sci. Technol., 2010, vol. 20, no. 4, p. 611. Yang, D., Li, J., Zheng, K., Du, C., and Liu, S., Int. J. Coal Prep. Util., 2016, no. 2, p.1. https://doi.org/10.1080/19392699.2016.1207634 Baruah, M.K. and Gogoi, P.C., Fuel, 1998, vol. 77, no. 77, p. 979. https://doi.org/10.1016/S0016-2361(97)00278-0 Marland, S., Merchant, A., and Rowson, N., Fuel, 2001, vol. 80, no. 13, p. 1839. https://doi.org/10.1016/S0016-2361(01)00050-3 Leiro, J.A., Mattila, S.S., and Laajalehto, K., Surf. Sci., 2003, vol. 547, nos. 1–2, p. 157. https://doi.org/10.1016/j.susc.2003.09.033 Grzybek, T., Pietrzak, R., and Wachowska, H., Fuel Process. Technol., 2002, vol. 77, p. 1. https://doi.org/10.1016/S0378-3820(02)00058-9 Pietrzak, R., Grzybek, T., and Wachowska, H., Fuel, 2007, vol. 86, no. 16, p. 2616. https://doi.org/10.1016/j.fuel.2007.02.025 Ma, L. L., Qin, Z.H., Zhang, L., Liu, X., and Chen, H., J. Fuel Chem. Technol., 2014, vol. 42, no. 3, p. 277. Lin, J. S., Hendricks, R. W., Harris, L. A., and Yust, C. S., J. Appl. Crystallogr., 1978, vol. 11, no. 5, p. 621. https://doi.org/10.1107/s0021889878014065 Mishra, S. B., Langwenya, S. P., Mamba, B. B., and Balakrishnan, M., Phys. Chem. Earth Parts A/b/c, 2010, vol. 35, no. 13, p.811. https://doi.org/10.1016/j.pce.2010.07.001 Teng, J., Mastalerz, M., and Hampton, L.B., Int. J. Coal. Geol., 2017, vol. 172, p. 80. https://doi.org/10.1016/j.coal.2017.02.001 Tao, W., Yang, H., Wu, Y., Liu, Q., Lv, J., and Hai, Z., Energ. Fuel, 2012, vol. 26, no. 1, p. 990. https://doi.org/10.1021/ef201332p Fu, B., Liu, G., Sun, M., Hower, J.C., Hu, G., and Wu, D., Fuel, 2018, vol. 228, p. 297. https://doi.org/10.1016/j.fuel.2018.04.085 Liu, Y., Gupta, R. and Sharma, A., Fuel, 2005, vol. 84, no. 10, p. 1259. https://doi.org/10.1016/j.fuel.2004.07.015 Xin, H.H., Chin. J. Spectrosc. Lab., 2012, vol. 29, no. 02, p. 690.