Variation of Sulfur Content in Coking Coal as Function of Its Particle Size
Tóm tắt
To understand quality of coking coal possessing different particle sizes, coal samples from Gao Yang (GY) and Shui Yu (SY) mines were systematically studied. The samples had wide particle size variations with six distinct ranges. The main emphasis was placed on analyzing sulfur and coke contents as function of particle sizes. X-ray photoelectron spectroscopy (XPS) was used to analyze sulfur content as well as its chemical state. Sulfur coordination and group geometry was analyzed by Fourier transform infrared spectroscopy (FTIR). Scanning electron microscopy (SEM) was applied to characterize surface morphology. Sieving of the coal samples increased ash and sulfur contents in all fractions. Organic sulfur was mostly present as thiophene for all particle size ranges. Macromolecular structure of coal was almost the same for all samples. Changes in total sulfur content of different coal fractions were mainly caused by the variations in inorganic sulfur concentrations because organic sulfur content remained almost constant. Understanding particle size distribution in different coals is important for selecting and optimizing appropriate desulfurization methods.
Tài liệu tham khảo
Ward, C.R., Int. J. Coal Geol., 2002, vol. 50, no. 1, p.135. https://doi.org/10.1016/S0166-5162(02)00117-9
Chou, C.L., Int. J. Coal Geol., 2012, vol. 100, p. 1. https://doi.org/10.1016/j.coal.2012.05.009
Mathews, J.P. and Chaffee, A.L., Fuel, 2012, vol. 96, p. 1. https://doi.org/10.1016/j.fuel.2011.11.025
Zhong, S.T., Zhao, W., Sheng, C., Xu, W., Zong, Z.M., and Wei, X.Y., Energ. Fuel, 2011, vol. 25, no. 8, p. 3687. https://doi.org/10.1021/ef200844a
Ulanovskii, M.L. and Miroshnichenko, D.V., Coke Chem., 2008, vol. 51, no. 2, p. 51. https://doi.org/10.3103/s1068364x08020038
Li, A., Li, P., and Chen, S.M., J. China Coal Soc., 2007, vol. 32, no.6, p. 639.
Song, J., Hua, Z., Guo, Z., Amp, X.I., and Co, S., Fuel Chem. Process., 2015, vol. 46, no. 3 p. 7.
Spears, D.A. and Booth, C.A., Fuel, 2002, vol. 81, no. 5, p. 683. doihttps://doi.org/10.1016/s0016-2361(01)00156-9
Cloke, M., Lester, E., and Belghazi, A., Fuel, 2002, vol. 81, no. 5, p. 699. https://doi.org/10.1016/S0016-2361(01)00162-4
Zhao, H., Bai, Z., Bai, J., Guo, Z., Kong, L., and Li, W., Fuel, 2015, vol. 148, no.15, p. 145. https://doi.org/10.1016/j.fuel.2015.01.104
Ratanakandilok, S., Ngamprasertsith, S., and Prasassarakich, P., Fuel, 2001, vol. 80, no. 13, p. 1937. https://doi.org/10.1016/S0016-2361(01)00047-3
Mesroghli, S., Yperman, J., Reggers, G., Jorjani, E., and Carleer, R., Fuel, 2016, vol. 183, p. 278. https://doi.org/10.1016/j.fuel.2016.06.037
Chen, P., Zhang, X., and Xue, G., J. Wuhan Eng. Inst., 2015, vol.27, no. 2, p.4.
Xu, R., Dai, B., Wei, W., Schenk, J. and Xue, Z., Fuel Process. Technol., 2018, vol. 173, p. 11. https://doi.org/10.1016/j.fuproc.2018.01.006
Ulanovskii, M.L. and Miroshnichenko, D.V., Coke Chem., 2008, vol. 51, no. 2, p. 51. https://doi.org/10.3103/s1068364x08020038
Dmitriev, A.N., Vitkina, G.Y., and Chesnokov, Y.A., Adv. Mater. Res., 2012, vols. 602–604, p. 365. doi 10.4028/www.scientific.net/amr.602-604.365
Cai, Y., Pan, Y., Xue, J., Sun, Q., Su, G., and Xiang, L., Appl. Surf. Sci., 2009, vol. 255, no. 21, p. 8750. https://doi.org/10.1016/j.apsusc.2009.06.028
Gornostayev, S., Rkki, J.H., and Kerkkonen, O., Fuel, 2009, vol. 88, no. 10, p. 2032. https://doi.org/10.1016/j.fuel.2009.02.044
Gu, Y., Yperman, J., Reggers, G., Carleer, R., and Vandewijngaarden, J., Fuel, 2016, vol. 184, no. nov.15, p. 304. https://doi.org/10.1016/j.fuel.2016.06.085
Li, P.S., Hu, Y., Yu, W., Yue, Y.N., Xu, Q., Hu, S., Hu, N.S., and Yang, J., J. Hazard. Mater., 2009, vol. 167, no. 1–3, p. 1126. https://doi.org/10.1016/j.jhazmat.2009.01.115
Nowicki, P., Pietrzak, R. and Wachowska, H., Energ. Fuel, 2010, vol. 24, no. 2, p. 1197. https://doi.org/10.1021/ef900932g
Pietrzak, R. and Wachowska, H., Fuel Process. Technol., 2006, vol.87, no. 11, p. 1021. https://doi.org/10.1016/j.fuproc.2006.08.001
Xia, W., Xie, G., and Peng, Y., Fuel, 2016, vol. 164, p. 186. https://doi.org/10.1016/j.fuel.2015.10.009
Zhang, L., Sato, A., and Ninomiya, Y., Fuel, 2002, vol. 81, no. 11, p. 1499. https://doi.org/10.1016/S0016-2361(02)00065-0
Geng, W., Nakajima, T., Takanashi, H., and Ohki, A., Fuel, 2009, vol. 88, no. 1, p. 139. https://doi.org/10.1016/j.fuel.2008.07.027
Mishra, A.K., Chattopadhyay, D.K., Sreedhar, B., and Raju, K.V.S.N., Progr. Org. Coatings, 2006, vol. 55, no. 3, p. 231. https://doi.org/10.1016/j.porgcoat.2005.11.007
Tang, L., Chen, S., Wang, S., Tao, X., He, H., and Fan, H., Energ. Fuels, 2017, vol.31, no.12, p. 13248. https://doi.org/10.1021/acs.energyfuels.7b02112
Feng, L., Zhao, G., Zhao, Y., Zhao, M., and Tang, J., Fuel, 2017, vol.203, p. 924. https://doi.org/10.1016/j.fuel.2017.04.112
Li, J., Du, C., and Bao, J., Int. J. Mining Sci. Technol., 2010, vol. 20, no. 4, p. 611.
Yang, D., Li, J., Zheng, K., Du, C., and Liu, S., Int. J. Coal Prep. Util., 2016, no. 2, p.1. https://doi.org/10.1080/19392699.2016.1207634
Baruah, M.K. and Gogoi, P.C., Fuel, 1998, vol. 77, no. 77, p. 979. https://doi.org/10.1016/S0016-2361(97)00278-0
Marland, S., Merchant, A., and Rowson, N., Fuel, 2001, vol. 80, no. 13, p. 1839. https://doi.org/10.1016/S0016-2361(01)00050-3
Leiro, J.A., Mattila, S.S., and Laajalehto, K., Surf. Sci., 2003, vol. 547, nos. 1–2, p. 157. https://doi.org/10.1016/j.susc.2003.09.033
Grzybek, T., Pietrzak, R., and Wachowska, H., Fuel Process. Technol., 2002, vol. 77, p. 1. https://doi.org/10.1016/S0378-3820(02)00058-9
Pietrzak, R., Grzybek, T., and Wachowska, H., Fuel, 2007, vol. 86, no. 16, p. 2616. https://doi.org/10.1016/j.fuel.2007.02.025
Ma, L. L., Qin, Z.H., Zhang, L., Liu, X., and Chen, H., J. Fuel Chem. Technol., 2014, vol. 42, no. 3, p. 277.
Lin, J. S., Hendricks, R. W., Harris, L. A., and Yust, C. S., J. Appl. Crystallogr., 1978, vol. 11, no. 5, p. 621. https://doi.org/10.1107/s0021889878014065
Mishra, S. B., Langwenya, S. P., Mamba, B. B., and Balakrishnan, M., Phys. Chem. Earth Parts A/b/c, 2010, vol. 35, no. 13, p.811. https://doi.org/10.1016/j.pce.2010.07.001
Teng, J., Mastalerz, M., and Hampton, L.B., Int. J. Coal. Geol., 2017, vol. 172, p. 80. https://doi.org/10.1016/j.coal.2017.02.001
Tao, W., Yang, H., Wu, Y., Liu, Q., Lv, J., and Hai, Z., Energ. Fuel, 2012, vol. 26, no. 1, p. 990. https://doi.org/10.1021/ef201332p
Fu, B., Liu, G., Sun, M., Hower, J.C., Hu, G., and Wu, D., Fuel, 2018, vol. 228, p. 297. https://doi.org/10.1016/j.fuel.2018.04.085
Liu, Y., Gupta, R. and Sharma, A., Fuel, 2005, vol. 84, no. 10, p. 1259. https://doi.org/10.1016/j.fuel.2004.07.015
Xin, H.H., Chin. J. Spectrosc. Lab., 2012, vol. 29, no. 02, p. 690.