Biến động hàm lượng Hg trong than có hàm lượng lưu huỳnh thấp liên quan đến môi trường hình thành than: một nghiên cứu trường hợp từ mỏ than Zhuji, vùng than Huainan, Bắc Trung Quốc

Springer Science and Business Media LLC - Tập 77 - Trang 1-9 - 2018
Xudong Wang1,2,3, Dun Wu1,3,4, Guijian Liu1,2,3, Ruoyu Sun5
1School of Earth and Space Sciences, CAS Key Laboratory of Crust-Mantle Materials and Environment, University of Science and Technology of China, Hefei, China
2Anhui Public Welfare Geological Survey Management Center, The Chinese Academy of Sciences, Xi’an, China
3State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi’an, China
4Exploration Research Institute, Anhui Provincial Bureau of Coal Geology, Hefei, China
5Institute of Surface-Earth System Science, Tianjin University, Tianjin, China

Tóm tắt

Hai mươi chín mẫu than có hàm lượng lưu huỳnh thấp đã được chọn để xác định độ lớn và tính biến động của hàm lượng thủy ngân (Hg) trong một hệ thống phân lớp đã được tài liệu hóa tốt, bao gồm mười lớp than liên tục tại mỏ than Zhuji, vùng than Huainan, tỉnh An Huy, Bắc Trung Quốc. Hàm lượng thủy ngân của các mẫu đã được đo bằng máy phân tích thủy ngân trực tiếp và kết quả tự tin đã được thu thập theo tiêu chuẩn tham chiếu, mẫu lặp lại và độ trống quy trình. Hàm lượng Hg trung bình tổng thể của mỏ được tính toán là 71,19 ± 9,28 ng/g dựa trên các lớp than trung bình và có trọng số theo ước tính trữ lượng của từng lớp than. Tiềm năng phát thải Hg ước tính cho vùng than Huainan rõ ràng thấp hơn so với giá trị tính toán từ yếu tố phát thải than trong sử dụng công nghiệp. Một xu hướng tăng hàm lượng Hg theo sự phát triển của môi trường lắng đọng đã được quan sát từ các lớp than số 3 đến 11-2. Kết hợp các bằng chứng về sedimentology và paleontology, một hiểu biết tốt hơn đã được đạt được về cơ chế giữ lại Hg trong các băng than cụ thể. Một tỷ lệ lớn Hg tồn tại trong các loại than có hàm lượng lưu huỳnh thấp có thể đã gắn kết với các nhóm chức năng của cấu trúc hữu cơ, trong khi pyrit thường phong phú trong các loại than có hàm lượng lưu huỳnh cao.

Từ khóa

#thủy ngân #hàm lượng lưu huỳnh thấp #mỏ than Zhuji #môi trường hình thành than #trữ lượng than

Tài liệu tham khảo

Carpi A (1997) Mercury from combustion sources: a review of the chemical species emitted and their transport in the atmosphere. Water Air Soil Pollut 98:241–254 Chou CL (1990) Geochemistry of sulfur in coal, geochemistry of sulfur in fossil fuels. American Chemical Society, New York, pp. 30–52 Dai S, Zeng R, Sun Y (2006a) Enrichment of arsenic, antimony, mercury, and thallium in a Late Permian anthracite from Xingren, Guizhou, Southwest China. Int J Coal Geol 66:217–226 Dai S, Ren D, Chou C-L, Li S, Jiang Y (2006b) Mineralogy and geochemistry of the No. 6 Coal (Pennsylvanian) in the Junger Coalfield, Ordos Basin, China. Int J Coal Geol 66:253–270 Dai S, Li D, Chou C-L, Zhao L, Zhang Y, Ren D et al (2008a) Mineralogy and geochemistry of boehmite-rich coals: new insights from the Haerwusu Surface Mine, Jungar Coalfield, Inner Mongolia, China. Int J Coal Geol 74:185–202 Dai S, Ren D, Zhou Y, Chou C-L, Wang X, Zhao L et al (2008b) Mineralogy and geochemistry of a superhigh-organic-sulfur coal, Yanshan Coalfield, Yunnan, China: evidence for a volcanic ash component and influence by submarine exhalation. Chem Geol 255:182–194 Dai S, Wang X, Zhou Y, Hower JC, Li D, Chen W et al (2011) Chemical and mineralogical compositions of silicic, mafic, and alkali tonsteins in the late Permian coals from the Songzao Coalfield, Chongqing, Southwest China. Chem Geol 282:29–44 Ding Z, Zheng B, Long J, Belkin HE, Finkelman RB, Chen C et al (2001) Geological and geochemical characteristics of high arsenic coals from endemic arsenosis areas in southwestern Guizhou Province, China. Appl Geochem 16:1353–1360 Dong Y, Lan CY, Zeng QP, Yang BC (1994) Lithofacies and paleogeography from Late Carboniferous to early stage of Late Permian in Huainan–Huaibei coalfields. Coal Geol Explor 22:9–12 Dronen LC, Moore AE, Kozliak EI, Seames WS (2004) An assessment of acid wash and bioleaching pre-treating options to remove mercury from coal. Fuel 83:181–186 Feng X, Hong Y (1999) Modes of occurrence of mercury in coals from Guizhou, People’s Republic of China. Fuel 78:1181–1188 Feng X, Qiu G (2008) Mercury pollution in Guizhou, Southwestern China—an overview. Sci Total Environ 400:227–237 Feng X, Sommar J, Lindqvist O, Hong Y (2002) Occurrence, emissions and deposition of mercury during coal combustion in the province Guizhou, China. Water Air Soil Pollut 139:311–324 Fester JI, Robinson WE (1966) Oxygen functional groups in green river oil-shale Kerogen and trona acids, coal science. American Chemical Society, New York, pp. 22–31 Finkelman RB, Bostick NH, Dulong FT, Senftle FE, Thorpe AN (1998) Influence of an igneous intrusion on the inorganic geochemistry of a bituminous coal from Pitkin County, Colorado. Int J Coal Geol 36:223–241 Fitzgerald WF, Lamborg CH, Hammerschmidt CR (2007) Marine biogeochemical cycling of mercury. Chem Rev 107:641–662 Gao LF, Chou L,GJ, Zheng CL, Zheng LG, W (2005) The study of sulfur geochemistry in Chinese coals. Bull Mineral Petrol Geochem 24:79–87 Goodarzi F, Goodarzi NN (2004) Mercury in Western Canadian subbituminous coal-a weighted average study to evaluate potential mercury reduction by selective mining. Int J Coal Geol 58:251–259 Haitzer M, Aiken GR, Ryan JN (2002) Binding of Mercury(II) to dissolved organic matter: the role of the mercury-to-DOM concentration ratio. Environ Sci Technol 36:3564–3570 Haitzer M, Aiken GR, Ryan JN (2003) Binding of Mercury(II) to aquatic humic substances: influence of pH and source of humic substances. Environ Sci Technol 37:2436–2441 Hesterberg D, Chou JW, Hutchison KJ, Sayers DE (2001) Bonding of Hg(II) to reduced organic sulfur in humic acid as affected by S/Hg ratio. Environ Sci Technol 35:2741–2745 Hower JC, Campbell JL, Teesdale WJ, Nejedly Z, Robertson JD (2008) Scanning proton microprobe analysis of mercury and other trace elements in Fe-sulfides from a Kentucky coal. Int J Coal Geol 75:88–92 Ketris MP, Yudovich YE (2009) Estimations of Clarkes for Carbonaceous biolithes: world averages for trace element contents in black shales and coals. Int J Coal Geol 78:135–148 Kisch HJ, Taylor GH (1966) Metamorphism and alteration near an intrusive-coal contact. Econ Geol 61:343–361 Kolker A, Senior CL, Quick JC (2006) Mercury in coal and the impact of coal quality on mercury emissions from combustion systems. Appl Geochem 21:1821–1836 Kwiecinska BK, Hamburg G, Vleeskens JM (1992) Formation temperatures of natural coke in the lower Silesian coal basin, Poland. Evidence from pyrite and clays by SEM-EDX. Int J Coal Geol 21:217–235 Li P, Feng X, Qiu G, Shang L, Wang S, Meng B (2009) Atmospheric mercury emission from artisanal mercury mining in Guizhou Province, Southwestern China. Atmos Environ 43:2247–2251 Liu GJ, Zheng L, Zhang Y, Qi C, Chen Y, Peng Z (2007) Distribution and mode of occurrence of As, Hg and Se and Sulfur in coal Seam 3 of the Shanxi Formation, Yanzhou Coalfield, China. Int J Coal Geol 71(2–3):371–385 Mason RP, Fitzgerald WF, Morel FMM (1994) The biogeochemical cycling of elemental mercury: anthropogenic influences. Geochim Cosmochim Acta 58:3191–3198 Merritt RD (1990) Thermal alteration and rank variation of coals in the Matanuska field, south-central Alaska. Int J Coal Geol 14:255–276 O’Driscoll NJ, Siciliano SD, Lean DRS, Amyot M (2005) Gross photoreduction kinetics of mercury in temperate freshwater lakes and rivers: application to a general model of DGM dynamics. Environ Sci Technol 40:837–843 Pacyna EG, Pacyna JM, Sundseth K, Munthe J, Kindbom K, Wilson S et al (2010) Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmos Environ 44:2487–2499 Qian J, Skyllberg U, Frech W, Bleam WF, Bloom PR, Petit PE (2002) Bonding of methyl mercury to reduced sulfur groups in soil and stream organic matter as determined by X-ray absorption spectroscopy and binding affinity studies. Geochim Cosmochim Acta 66:3873–3885 Ravichandran M (2004) Interactions between mercury and dissolved organic matter-a review. Chemosphere 55:319–331 Ren D, Zhao F, Wang Y, Yang S (1999) Distributions of minor and trace elements in Chinese coals. Int J Coal Geol 40:109–118 Sakulpitakphon T, Hower JC, Schram WH, Ward CR (2004) Tracking mercury from the mine to the power plant: geochemistry of the Manchester coal bed, Clay County, Kentucky. Int J Coal Geol 57:127–141 Schroeder WH, Munthe J (1998) Atmospheric mercury—an overview. Atmos Environ 32:809–822 Skyllberg U, Bloom PR, Qian J, Lin C-M, Bleam WF (2006) Complexation of Mercury(II) in soil organic matter: EXAFS evidence for linear two-coordination with reduced sulfur groups. Environ Sci Technol 40:4174–4180 Streets DG, Hao J, Wu Y, Jiang J, Chan M, Tian H et al (2005) Anthropogenic mercury emissions in China. Atmos Environ 39:7789–7806 Streets DG, Zhang Q, Wu Y (2009a) Projections of Global Mercury Emissions in 2050. Environ Sci Technol 43:2983–2988 Streets DG, Hao J, Wang S, Wu Y (2009b) Mercury emissions from coal combustion in China. In: Mason R, Pirrone N (eds), Mercury fate and transport in the global atmosphere, Springer, New York, pp 51–65 Sun R, Liu G, Zheng L, Chou C-L (2010a) Geochemistry of trace elements in coals from the Zhuji Mine, Huainan Coalfield, Anhui, China. Int J Coal Geol 81:81–96 Sun R, Liu G, Zheng L, Chou C-L (2010b) Characteristics of coal quality and their relationship with coal-forming environment: a case study from the Zhuji exploration area, Huainan coalfield. Anhui Chin Energy 35:423–435 Tang S, Feng X, Qiu J, Yin G, Yang Z (2007) Mercury speciation and emissions from coal combustion in Guiyang, southwest China. Environ Res 105:175–182 Toole-O’Neil B, Tewalt SJ, Finkelman RB, Akers DJ (1999) Mercury concentration in coal-unraveling the puzzle. Fuel 78:47–54 Wu Y, Wang S, Streets DG, Hao J, Chan M, Jiang J (2006) Trends in anthropogenic mercury emissions in China from 1995 to 2003. Environ Science Technol 40:5312–5318 Yang M, Liu G, Sun R, Chou C-L, Zheng L (2011) Characterization of intrusive rocks and REE geochemistry of coals from the Zhuji Coal Mine, Huainan Coalfield, Anhui, China. Int J Coal Geol. https://doi.org/10.1016/j.coal.2011.06.012 Yudovich YE (2003) Notes on the marginal enrichment of Germanium in coal beds. Int J Coal Geol 56:223–232 Yudovich YE, Ketris MP (2005a) Mercury in coal: a review part 2. Coal use and environmental problems. Int J Coal Geol 62:135–165 Yudovich YE, Ketris MP (2005b) Mercury in coal: a review: part 1. Geochemistry. Int J Coal Geol 62:107–134 Zhang L, Wong MH (2007) Environmental mercury contamination in China: sources and impacts. Environ Int 33:108–121 Zhang J, Ren D, Zhu Y, Chou C-L, Zeng R, Zheng B (2004) Mineral matter and potentially hazardous trace elements in coals from Qianxi Fault Depression Area in southwestern Guizhou, China. Int J Coal Geol 57:49–61 Zheng LG, Liu GJ, Chou C-L (2007) The distribution, occurrence and environmental effect of mercury in Chinese coals. Sci Total Environ 384:374–383 Zheng L, Liu G, Chou C-L (2008) Abundance and modes of occurrence of mercury in some low-sulfur coals from China. Int J Coal Geol 73:19–26