Variation in Biological Soil Crust Bacterial Abundance and Diversity as a Function of Climate in Cold Steppe Ecosystems in the Intermountain West, USA

Erika S. Blay1, Stacy G. Schwabedissen1, Timothy S. Magnuson1, Ken A. Aho1, Peter P. Sheridan1, Kathleen A. Lohse1
1Department of Biological Sciences, Idaho State University, Pocatello, USA

Tóm tắt

Biological soil crust (biocrust) is a composite of mosses, lichens, and bacteria that performs many important soil system functions, including increasing soil stability, protecting against wind erosion, reducing nutrient loss, and mediating carbon and nitrogen fixation cycles. These cold desert and steppe ecosystems are expected to experience directional changes in both climate and disturbance. These include increased temperatures, precipitation phase changes, and increased disturbance from anthropogenic land use. In this study, we assessed how climate and grazing disturbance may affect the abundance and diversity of bacteria in biocrusts in cold steppe ecosystems located in southwestern Idaho, USA. To our knowledge, our study is the first to document how biocrust bacterial composition and diversity change along a cold steppe climatic gradient. Analyses based on 16S small subunit ribosomal RNA gene sequences identified the phylum Actinobacteria as the major bacterial component within study site biocrusts (relative abundance = 36–51%). The abundance of the phyla Actinobacteria and Firmicutes was higher at elevations experiencing cooler, wetter climates, while the abundance of Cyanobacteria, Proteobacteria, and Chloroflexi decreased. The abundance of the phyla Cyanobacteria and Proteobacteria showed no significant evidence of decline in grazed areas. Taken together, results from this study indicate that bacterial communities from rolling biocrusts found in cold steppe ecosystems are affected by climate regime and differ substantially from other cold desert ecosystems, resulting in potential differences in nutrient cycling and ecosystem dynamics.

Từ khóa


Tài liệu tham khảo

Stacker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) (2013) The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, USA

Dettinger MD, Cayan DR, Diaz HF, Meko DM (1998) North-south precipitation patterns in western North America on interannual-to-decadal timescales. J. Clim. 11:3095–3111. doi:10.1175/1520-0442(1998)011<3095:NSPPIW>2.0.CO;2

Groisman PY, Karl TR, Easterling DR, Knight RW, Jamason PF, Hennessy KJ, Suppiah R, Page CM, Wibig J, Fortuniak K, Razuvaev VN, Douglas A, Forland E, Zhai P (1999) Changes in the probability of heavy precipitation: important indicators of climate change. Clim. Chang. 42:243–283. doi:10.1023/A:1005432803188

Easterling DR, Karl TR, Gallo KP, Robinson DA, Trenberth KE, Dai A (2000) Observed climate variability and change of relevance to the biosphere. J. Geophys. Res. 105:20101–20114. doi:10.1029/2000JD900166

USGCRP, Karl TR, Melillo JM, Peterson TC (eds) (2009) Global climate change impacts in the United States. New York, USA

Klos PZ, Abatzoglou JT, Bean A, Blades J, Clark MA, Dodd M, Hall TE, Haruch A, Higuera PE, Holbrook JD, Jansen VS, Kemp K, Lankford A, Link TE, Magney T, Meddens AJH, Mitchell L, Moore B, Morgan P, Newingham BA, Niemeyer RJ, Soderquist B, Suazo AA, Vierling KT, Walden V, Walsh C (2015) Indicators of climate change in Idaho: an assessment framework for coupling biophysical change and social perception. Wea Climate Soc 7:238–254. doi:10.1175/WCAS-D-13-00070.1

Belnap J (2003) The world at your feet: desert biological soil crusts. Front. Ecol. Environ. 1:181–189. doi:10.2307/3868062

Steven B, Kuske CR, Gallegos-Graves LV, Reed SC, Belnap J (2015) Climate change and physical disturbance manipulations result in distinct biological soil crust communities. Appl. Environ. Microbiol. 81:7448–7459. doi:10.1128/AEM.01443-15

Kuske CR, Yeager CM, Johnson S, Ticknor LO, Belnap J (2012) Response and resilience of soil biocrust bacterial communities to chronic physical disturbance in arid shrublands. ISME J 6:886–897. doi:10.1038/ismej.2011.153

Barger NN, Harrick JE, Zee JV, Belnap J (2006) Impacts of biological soil crust disturbance and composition on C and N loss from water erosion. Biogeochemistry 77:247–263. doi:10.1007/s10533-005-1424-7

Eldridge DJ, Zaady E, Shachak M (2000) Infiltration through three contrasting biological soil crusts in patterned landscapes in the Negev, Isreal. Catena 40:323–326. doi:10.1016/S0341-8162(00)00082-5

Nayak A, Marks D, Chandler DG, Seyfried M (2010) Long-term snow, climate, and streamflow trends at the Reynolds Creek experimental watershed, Owyhee Mountains, Idaho, United States. Water Resour. Res. 46:W06519. doi:10.1029/2008WR007525

Belnap J (2002) Nitrogen fixation in biological soil crusts from southeast Utah, USA. Biol. Fertil. Soils 35:128–135. doi:10.1007/s00374-002-0452-x

Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glockner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generations sequencing-based diversity studies. Nucleic Acids Res. 41:1. doi:10.1093/nar/gks808

Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, Zhang Y, Blankenberg D, Albert I, Taylor J, Miller W, Kent WJ, Nekrutenko A (2005) Galaxy: a platform for interactive large-scale genome analysis. Genome Res. 15:1451–1455. doi:10.1101/gr.4086505

Goecks J, Nekrutenko A, Taylor J, The Galaxy Team (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 11:R86. doi:10.1186/gb-2010-11-8-r86

Blankenberg D, Von Kuster G, Coraor N, Ananda G, Lazarus R, Mangan M, Nekrutenko A, Taylor J (2010) Galaxy: a web-based genome analysis tool for experimentalists. Curr Protoc Mol Biol Ch 19:Unit 19.10.1–21. doi: 10.1002/0471142727.mb1910s89

Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A, Wilkening J, Edwards RA (2008) The metagenomics RAST server-a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9:386. doi:10.1186/1471-2105-9-386

Wilke A, Bischof J, Harrison T, Brettin R, D’Souza M, Gerlach W, Matthews H, Paczian T, Wilkening J, Glass EM, Desai N, Meyer F (2015) A RESTful API for accessing microbial community data for MG-RAST. PLoS Comput. Biol. 11:1. doi:10.1371/journal.pcbi.1004008

Kruskal JB (1964) Nonmetric multidimensional scaling: a numerical method. Psychometrika 29:115–129. doi:10.1007/BF02289694

Bray JR, Curtis JT (1957) An ordination of the upland forest communities in southern Wisconsin. Ecol. Monogr. 27:325–349. doi:10.2307/1942268

Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecology 26:32–46

Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2015) vegan: Community Ecology Package. R package version 2.3–0. http://CRAN.R-project.org/package=vegan

Belnap J, Lange OL (eds) (2003) Biological soil crusts: structure, function, and management. Ecological Studies 150, Berlin, Germany

Bachar A, Al-Ashhab A, Soares MI, Sklarz MY, Angel R, Ungar ED, Gillor O (2010) Soil microbial abundance and diversity along a low precipitation gradient. Microb. Ecol. 60:435–461. doi:10.1007/s00248-010-9727-1

Kemmling A, Pfeiffer B, Daniel R, Hoppert M (2012) Bacterial diversity in biological soil crusts from extrazonal mountain dry steppes in northern Mongolia. Wiss Beitr Martin Luther Univ Halle Wittenberg 12:437–449

Budel B, Darienko T, Deutschewitz K, Dojani S, Friedl T, Mohr KI, Salisch M, Reisser W, Weber B (2009) Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microb. Ecol. 57:229–247. doi:10.1007/s00248-008-9449-9

Naether A, Foesel BU, Naegele V, Wüst PK, Weinert J, Bonkowski M, Alt F, Oelmann Y, Polle A, Lohaus G, Gockel S (2012) Environmental factors affect acidobacterial communities below the subgroup level in grassland and forest soils. Appl. Environ. Microbiol. 78:7398–7406