Variants of derivation modes for which catalytic P systems with one catalyst are computationally complete
Tóm tắt
Catalytic P systems are among the first variants of membrane systems ever considered in this area. This variant of systems also features some prominent computational complexity questions, and in particular the problem of using only one catalyst: is one catalyst enough to allow for generating all recursively enumerable sets of multisets? Several additional ingredients have been shown to be sufficient for obtaining even computational completeness with only one catalyst. Last year we could show that the derivation mode
Từ khóa
Tài liệu tham khảo
Alhazov, A., Aman, B., Freund, R. (2014). P systems with anti-matter. In: M. Gheorghe, G. Rozenberg, A. Salomaa, P. Sosík, C. Zandron (eds.) Membrane Computing – 15th International Conference, CMC 2014, Prague, Czech Republic, August 20–22, 2014, Revised Selected Papers, Lecture Notes in Computer Science, vol. 8961, pp. 66–85. Springer https://doi.org/10.1007/978-3-319-14370-5_5
Alhazov, A., Aman, B., Freund, R., Păun, Gh. (2014). Matter and anti-matter in membrane systems. In: H. Jürgensen, J. Karhumäki, A. Okhotin (eds.) Descriptional complexity of formal systems – 16th International Workshop, DCFS 2014, Turku, Finland, August 5–8, 2014. Proceedings, Lecture Notes in Computer Science, vol. 8614, pp. 65–76. Springer https://doi.org/10.1007/978-3-319-09704-6_7
Alhazov, A., Freund, R. (2014). P systems with toxic objects. In: M. Gheorghe, G. Rozenberg, A. Salomaa, P. Sosík, C. Zandron (eds.) Membrane Computing – 15th International Conference, CMC 2014, Prague, Czech Republic, August 20–22, 2014, Revised Selected Papers, Lecture Notes in Computer Science, vol. 8961, pp. 99–125. Springer https://doi.org/10.1007/978-3-319-14370-5_7
Alhazov, A., Freund, R., Ivanov, S. (2016). Variants of energy-controlled P systems. In: Proceedings of NIT 2016
Alhazov, A., Freund, R., & Ivanov, S. (2019). Variants of P systems with activation and blocking of rules. Nat. Comput., 18(3), 593–608. https://doi.org/10.1007/s11047-019-09747-5
Alhazov, A., Freund, R., Ivanov, S. (2020). Catalytic P systems with weak priority of catalytic rules. In: R. Freund (ed.) Proceedings ICMC 2020, September 14–18, 2020, pp. 67–82. TU Wien
Alhazov, A., Freund, R., Ivanov, S. (2020). P systems with limiting the number of objects in membranes. In: R. Freund (ed.) Proceedings ICMC 2020, September 14–18, 2020, pp. 83–98. TU Wien
Alhazov, A., Freund, R., & Ivanov, S. (2021). P systems with limited number of objects. Journal of Membrane Computing, 3, 1–9. https://doi.org/10.1007/s41965-020-00068-6
Alhazov, A., Freund, R., & Ivanov, S. (2021). When catalytic P systems with one catalyst can be computationally complete. Journal of Membrane Computing. https://doi.org/10.1007/s41965-021-00079-x
Alhazov, A., Freund, R., Ivanov, S., Verlan, S. (2017). (Tissue) P systems with vesicles of multisets. In: E. Csuhaj-Varjú, P. Dömösi, Gy. Vaszil (eds.) Proceedings 15th International Conference on Automata and Formal Languages, AFL 2017, Debrecen, Hungary, September 4–6, 2017, EPTCS, vol. 252, pp. 11–25. https://doi.org/10.4204/EPTCS.252.6
Alhazov, A., Freund, R., Leporati, A., Oswald, M., & Zandron, C. (2006). (Tissue) P systems with unit rules and energy assigned to membranes. Fundam. Informaticae, 74(4), 391–408.
Alhazov, A., Freund, R., Oswald, M., & Verlan, S. (2009). Partial halting and minimal parallelism based on arbitrary rule partitions. Fundam. Inform., 91(1), 17–34. https://doi.org/10.3233/FI-2009-0031
Alhazov, A., Freund, R., & Sosík, P. (2015). Small P systems with catalysts or anti-matter simulating generalized register machines and generalized counter automata. Comput. Sci. J. Moldova, 23(3), 304–328.
Alhazov, A., Freund, R., & Verlan, S. (2017). P systems working in maximal variants of the set derivation mode. In: A. Leporati, G. Rozenberg, A. Salomaa, C. Zandron (eds.) Membrane Computing – 17th International Conference, CMC 2016, Milan, Italy, July 25–29, 2016, Revised Selected Papers, Lecture Notes in Computer Science, vol. 10105, pp. 83–102. Springer https://doi.org/10.1007/978-3-319-54072-6_6
Ciobanu, G., Marcus, S., & Păun, Gh. (2009). New strategies of using the rules of a P system in a maximal way. power and complexity. Romanian Journal of Information Science and Technology 12(2), 21–37
Freund, R. (2003). Energy-controlled P systems. In: Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron (eds.) Membrane Computing, pp. 247–260. Springer
Freund, R. (2013). Purely catalytic P systems: two catalysts can be sufficient for computational completeness. In A. Alhazov, S. Cojocaru, M. Gheorghe, Yu. Rogozhin (Eds.), CMC14 Proceedings 14th International Conference on Membrane Computing, Chişinău, August 20–23, 2013 (pp. 153–166). Academy of Sciences of Moldova: Institute of Mathematics and Computer Science.
Freund, R. (2016). P automata: New ideas and results. In: H. Bordihn, R. Freund, B. Nagy, Gy. Vaszil (eds.) Eighth Workshop on Non-Classical Models of Automata and Applications, NCMA 2016, Debrecen, Hungary, August 29–30, 2016. Proceedings, [email protected], vol. 321, pp. 13–40. Österreichische Computer Gesellschaft
Freund, R. (2020). How derivation modes and halting conditions may influence the computational power of P systems. Journal of Membrane Computing, 2(1), 14–25. https://doi.org/10.1007/s41965-019-00028-9
Freund, R., Kari, L., Oswald, M., & Sosík, P. (2005). Computationally universal P systems without priorities: two catalysts are sufficient. Theoretical Computer Science, 330(2), 251–266. https://doi.org/10.1016/j.tcs.2004.06.029.
Freund, R., Leporati, A., Mauri, G., Porreca, A.E., Verlan, S., Zandron, C. (2014). Flattening in (tissue) P systems. In: A. Alhazov, S. Cojocaru, M. Gheorghe, Yu. Rogozhin, G. Rozenberg, A. Salomaa (eds.) Membrane Computing, Lecture Notes in Computer Science, vol. 8340, pp. 173–188. Springer https://doi.org/10.1007/978-3-642-54239-8_13
Freund, R., & Oswald, M. (2007). Partial halting in P systems. Int. J. Found. Comput. Sci., 18(6), 1215–1225. https://doi.org/10.1142/S0129054107005261
Freund, R., Oswald, M. (2013). Catalytic and purely catalytic P automata: Control mechanisms for obtaining computational completeness. In: S. Bensch, F. Drewes, R. Freund, F. Otto (eds.) Fifth Workshop on Non-Classical Models for Automata and Applications – NCMA 2013, Umeå, Sweden, August 13 – August 14, 2013, Proceedings, [email protected], vol. 294, pp. 133–150. Österreichische Computer Gesellschaft
Freund, R., Oswald, M. (2017). Variants of spiking neural P systems with energy control. In: Proceedings of ICAROB 2017
Freund, R., Oswald, M., & Păun, Gh. (2015). Catalytic and purely catalytic P systems and P automata: control mechanisms for obtaining computational completeness. Fundam. Inform., 136(1–2), 59–84. https://doi.org/10.3233/FI-2015-1144.
Freund, R., Păun, Gh. (2013). How to obtain computational completeness in P systems with one catalyst. In: T. Neary, M. Cook (eds.) Proceedings Machines, Computations and Universality 2013, MCU 2013, Zürich, Switzerland, September 9–11, 2013. EPTCS, vol. 128, pp. 47–61 https://doi.org/10.4204/EPTCS.128.13
Freund, R., Păun, Gh., Pérez-Jiménez, M.J. (2007). Polarizationless P systems with active membranes working in the minimally parallel mode. In: S.G. Akl, C.S. Calude, M.J. Dinneen, G. Rozenberg, T. Wareham (eds.) Unconventional Computation, 6th International Conference, UC 2007, Kingston, Canada, August 13-17, 2007, Proceedings, Lecture Notes in Computer Science, vol. 4618, pp. 62–76. Springer https://doi.org/10.1007/978-3-540-73554-0_8
Freund, R., Rogozhin, Yu., Verlan, S. (2012). P systems with minimal left and right insertion and deletion. In: J. Durand-Lose, N. Jonoska (eds.) Unconventional Computation and Natural Computation – 11th International Conference, UCNC 2012, Orléan, France, September 3–7, 2012. Proceedings, Lecture Notes in Computer Science, vol. 7445, pp. 82–93. Springer https://doi.org/10.1007/978-3-642-32894-7_9
Freund, R., Sosík, P. (2015). On the power of catalytic P systems with one catalyst. In: G. Rozenberg, A. Salomaa, J.M. Sempere, C. Zandron (eds.) Membrane Computing – 16th International Conference, CMC 2015, Valencia, Spain, August 17–21, 2015, Revised Selected Papers, Lecture Notes in Computer Science, vol. 9504, pp. 137–152. Springer https://doi.org/10.1007/978-3-319-28475-0_10
Freund, R., Verlan, S. (2007). A formal framework for static (tissue) P systems. In: G. Eleftherakis, P. Kefalas, Gh. Păun, G. Rozenberg, A. Salomaa (eds.) Membrane Computing, Lecture Notes in Computer Science, vol. 4860, pp. 271–284. Springer https://doi.org/10.1007/978-3-540-77312-2_17
Freund, R., & Verlan, S. (2011). (Tissue) P systems working in the k-restricted minimally or maximally parallel transition mode. Nat. Comput., 10(2), 821–833. https://doi.org/10.1007/s11047-010-9215-z
Krithivasan, K., Păun, Gh., & Ramanujan, A. (2014). On controlled P systems. Fundam. Inform. 131(3–4), 451–464 https://doi.org/10.3233/FI-2014-1025
Minsky, M. L. (1967). Computation. Englewood Cliffs: Finite and Infinite Machines. Prentice Hall.
Păun, Gh. (2000). Computing with membranes. Journal of Computer and System Sciences, 61(1), 108–143. https://doi.org/10.1006/jcss.1999.1693
Păun, Gh. (2002). Membrane Computing: An Introduction. Springer. https://doi.org/10.1007/978-3-642-56196-2
Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) (2010). The Oxford Handbook of Membrane Computing. Oxford University Press
Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer (1997). https://doi.org/10.1007/978-3-642-59136-5
The P Systems Website. http://ppage.psystems.eu/