Variants in the fetal genome near FLT1 are associated with risk of preeclampsia

Nature Genetics - Tập 49 Số 8 - Trang 1255-1260 - 2017
Ralph McGinnis1, Valgerður Steinthórsdóttir2, Nicholas Williams1, Guðmar Þorleifsson2, Scott Shooter1, Sigrun Hjartardottir3, Anna F. Dominiczak1, Lilja Stéfansdóttir2, Lucy Hildyard1, Jon K. Sigurdsson2, John P. Kemp4, Gabriela B. Silva5, Liv Cecilie Vestrheim Thomsen5, Tiina Jääskeläinen6, Eero Kajantie7, Sally Chappell8, Noor Kalsheker8, Ashley Moffett9, Susan E. Hiby9, Wai Lee10, Sandosh Padmanabhan10, Nigel Simpson11, Vivien A. Dolby11, Eleonora Staines-Urias12, Stephanie M. Engel13, A. Haugan14, Lill Trogstad14, Gulnara Svyatova15, Nodira Zakhidova16, Dilbar Najmutdinova17, Håkon K. Gjessing14, Juan P. Casas18, Frank Dudbridge12, James J. Walker11, Fiona Broughton Pipkin19, Unnur Þorsteinsdóttir20, Reynir Tómas Geirsson3, Debbie A. Lawlor21, Ann‐Charlotte Iversen5, Per Magnus14, Hannele Laivuori6, Kāri Stefánsson20, Linda Morgan8
1Wellcome Trust Sanger Institute, Cambridge, UK
2deCODE Genetics/Amgen, Reykjavik, Iceland
3Department of Obstetrics and Gynecology, Landspitali University Hospital, Reykjavik, Iceland
4MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
5Centre of Molecular Inflammation Research (CEMIR) and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
6Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
7National Institute for Health and Welfare, Helsinki, Finland
8School of Life Sciences, University of Nottingham, Nottingham, UK
9Department of Pathology, University of Cambridge, Cambridge, UK
10BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical, Sciences, University of Glasgow, Glasgow, UK
11Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, UK
12Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
13Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
14Norwegian Institute of Public Health, Oslo, Norway
15Scientific Center of Obstetrics, Gynecology and Perinatology, Almaty, Kazakhstan
16Institute of Immunology, Uzbek Academy of Sciences, Tashkent, Uzbekistan
17Republic Specialized Scientific Practical Medical Centre of Obstetrics and Gynecology, Tashkent, Uzbekistan
18Farr Institute of Health Informatics, University College London, London, UK
19Medical School, University of Nottingham, Nottingham, UK
20Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
21School of Social and Community Medicine, University of Bristol, Bristol, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Souza, J.P. et al. Moving beyond essential interventions for reduction of maternal mortality (the WHO Multicountry Survey on Maternal and Newborn Health): a cross-sectional study. Lancet 381, 1747–1755 (2013).

Cnattingius, S., Reilly, M., Pawitan, Y. & Lichtenstein, P. Maternal and fetal genetic factors account for most of familial aggregation of preeclampsia: a population-based Swedish cohort study. Am. J. Med. Genet. A. 130A, 365–371 (2004).

Johnson, M.P. et al. Genome-wide association scan identifies a risk locus for preeclampsia on 2q14, near the inhibin, beta B gene. PLoS One 7, e33666 (2012).

Zhao, L. et al. Genome-wide association study identifies a maternal copy-number deletion in PSG11 enriched among preeclampsia patients. BMC Pregnancy Childbirth 12, 61 (2012).

Maynard, S.E. et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J. Clin. Invest. 111, 649–658 (2003).

Ainsworth, H.F., Unwin, J., Jamison, D.L. & Cordell, H.J. Investigation of maternal effects, maternal–fetal interactions and parent-of-origin effects (imprinting), using mothers and their offspring. Genet. Epidemiol. 35, 19–45 (2011).

Monk, D. Genomic imprinting in the human placenta. Am. J. Obstet. Gynecol. 213 (Suppl. 4), S152–S162 (2015).

Staff, A.C. et al. Redefining preeclampsia using placenta-derived biomarkers. Hypertension 61, 932–942 (2013).

Cerdeira, A.S. & Karumanchi, S.A. Angiogenic factors in preeclampsia and related disorders. Cold Spring Harb. Perspect. Med. 2, a006585 (2012).

Tam, B.Y. et al. VEGF modulates erythropoiesis through regulation of adult hepatic erythropoietin synthesis. Nat. Med. 12, 793–800 (2006).

Rehn, M. et al. Hypoxic induction of vascular endothelial growth factor regulates murine hematopoietic stem cell function in the low-oxygenic niche. Blood 118, 1534–1543 (2011).

Heink, S., Ludwig, D., Kloetzel, P.M. & Krüger, E. IFN-γ-induced immune adaptation of the proteasome system is an accelerated and transient response. Proc. Natl. Acad. Sci. USA 102, 9241–9246 (2005).

Bdolah, Y. et al. Circulating angiogenic proteins in trisomy 13. Am. J. Obstet. Gynecol. 194, 239–245 (2006).

Brown, M.A., Lindheimer, M.D., de Swiet, M., Van Assche, A. & Moutquin, J.M. The classification and diagnosis of the hypertensive disorders of pregnancy: statement from the International Society for the Study of Hypertension in Pregnancy (ISSHP). Hypertens. Pregnancy 20, IX–XIV (2001).

GOPEC Consortium. Disentangling fetal and maternal susceptibility for pre-eclampsia: a British multicenter candidate-gene study. Am. J. Hum. Genet. 77, 127–131 (2005).

Evans, D.M. et al. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nat. Genet. 43, 761–767 (2011).

Boyd, A. et al. Cohort profile: the 'children of the 90s'—the index offspring of the Avon Longitudinal Study of Parents and Children. Int. J. Epidemiol. 42, 111–127 (2013).

Hjartardottir, S., Leifsson, B.G., Geirsson, R.T. & Steinthorsdottir, V. Paternity change and the recurrence risk in familial hypertensive disorder in pregnancy. Hypertens. Pregnancy 23, 219–225 (2004).

Magnus, P. et al. Cohort profile update: The Norwegian Mother and Child Cohort Study (MoBa). Int. J. Epidemiol. 45, 382–388 (2016).

Jääskeläinen, T. et al. Cohort profile: the Finnish Genetics of Pre-eclampsia Consortium (FINNPEC). BMJ Open 6, e013148 (2016).

Patterson, N., Price, A.L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).

Marchini, J. & Howie, B. Genotype imputation for genome-wide association studies. Nat. Rev. Genet. 11, 499–511 (2010).

O'Connell, J. et al. A general approach for haplotype phasing across the full spectrum of relatedness. PLoS Genet. 10, e1004234 (2014).

Gudbjartsson, D.F. et al. Large-scale whole-genome sequencing of the Icelandic population. Nat. Genet. 47, 435–444 (2015).

Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999).

Hellmich, C. et al. Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants and sleep neurophysiology. BMC Med. Genet. 16, 96 (2015).

Han, B. & Eskin, E. Random-effects model aimed at discovering associations in meta-analysis of genome-wide association studies. Am. J. Hum. Genet. 88, 586–598 (2011).

Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375, S1–S3 (2012).

Hendricks, A.E., Dupuis, J., Logue, M.W., Myers, R.H. & Lunetta, K.L. Correction for multiple testing in a gene region. Eur. J. Hum. Genet. 22, 414–418 (2014).

Austdal, M. et al. Metabolic profiles of placenta in preeclampsia using HR-MAS MRS metabolomics. Placenta 36, 1455–1462 (2015).